MySQL DBA

1. Introduction:

1.1. Overview of MySQL Database Management System:

MySQL is a database management system

A database is a structured collection of data. It may be anything from a simple shopping list to a picture gallery or the vast amounts of information in a corporate network. To add, access, and process data stored in a computer database, you need a database management system such as MySQL Server.

MySQL is a relational database management system

A relational database stores data in separate tables rather than putting all the data in one big storeroom. This adds speed and flexibility. SQL is the most common standardized language used to access databases and is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to the current version of the standard. We use the phrase “the SQL standard” to mean the current version of the SQL Standard at any time.

MySQL software is Open Source

Open Source means that it is possible for anyone to use and modify the software. Anybody can download the MySQL software from the Internet and use it without paying anything. If you wish, you may study the source code and change it to suit your needs.

1.2. History of MySQL

They started out with the intention of using the mSQL database system to connect to our tables using our own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that mSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our database but with almost the same API interface as mSQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose Twebaze, an Open Source software developer from Swaziland, Africa. According to Ambrose, the feminine name Sakila has its roots in SiSwati, the local language of Swaziland. Sakila is also the name of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

1.3. The Main Features of MySQL

· Written in C and C++.

· Tested with a broad range of different compilers.

· Works on many different platforms.

· Designed to be fully multi-threaded using kernel threads, to easily use multiple CPUs if they are available

· Provides transactional and non-transactional storage engines.

· Implements in-memory hash tables, which are used as temporary tables.

· Works in cross platform.

Why companies are preferring MySQL?

Before MySQL doesn't supported stored procedures, functions, triggers, views, subqueries and partitioning. But now they are supported. Small and middle level companies are relied on MySQL because it is opensource. Supports replication and clustering for High Availability.

1.4. Architecture:

Client/Server Overview:

The MySQL database system operates using a client/server architecture. The server is a central program that manages database contents, and client programs connect to the server
to retrieve or modify the data. MySQL also includes non-client utility programs and scripts.

MySQL Server: This is the mysqld program that manages database and tables. Most users choose binary MySQL distribution that includes a server ready to run with the capabilities they need, but it's also possible to compile MySQL from source.

[image: image1.emf]Privilege Type Table Priv Function

CREATE Create_priv databases, tables, or indexes

DROP Drop_priv databases, tables, or views

GRANT OPTION Grant_priv databases, tables, or stored routines

REFERENCES References_priv UNUSED

EVENT Event_priv databases

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables or columns

SELECT Select_priv tables or columns

UPDATE Update_priv tables or columns

CREATE TEMPORARY TABLES Create_tmp_table_priv tables

LOCK TABLES Lock_tables_priv tables

TRIGGER Trigger_priv tables

CREATE VIEW Create_view_priv views

SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

CREATE ROUTINE Create_routine_priv stored routines

EXECUTE Execute_priv To execute stored routines

FILE File_priv OUTFILE, INFILE

CREATE TABLESPACE Create_tablespace_privserver administration

CREATE USER Create_user_priv server administration

PROCESS Process_priv SHOW PROCESSLIST

RELOAD Reload_priv FLUSH STATEMENTS

REPLICATION CLIENT Repl_client_priv SHOW MASTER & SLAVE

REPLICATION SLAVE Repl_slave_priv REPLICATION

SHOW DATABASES Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

SUPER Super_priv CHANGE MASTER, KILL, PURGE, SET GLOBAL

USAGE To connect to MySQL

[image: image2.png]Local Server Remote Server

Federated e queriesidata 4. He to Table.

frm
File e

[image: image3.png]~ ~
N sy
== \ / ==
st v =
5 =

ol S o EARSNSE—)

process .,mss/ 7 o
~ _ ~

 Disk

 = Control Flow

Client Programs: These are programs that communicate with the server by sending requests to it over a network connection. The server acts on each request and returns a response to the client. For example you can use the mysql client to send queries to the server, and the server returns the query results. A client program can connect locally to a server running on the same machine or remotely to a server running on a different machine.

Non-client utility programs: These are programs that generally used for special purposes and do not acts as clients of the server. They do not connect to the server, for example mysqld_safe is a script for starting and stopping the server. Myisamchk is a standalone utility for table check and repair.

Application layer:

This is where the client interact with the RDBMS. This layer is used by three users:

Administrator.

client.

User.

i) Administrative Interface and Utilities:-

This layer is used by Administrator. This includes utilities such as mysqladmin, myisamchk, mysqldump etc.

ii) Client Interface and Utilities:-

This layer is used by the clients to communicate with RBDMS. The client interface uses MySQL APIs for various different programming languages such as the PHP API, Java API, etc.

iii) Query Interface:

This use the mysql as a “interactive tool” that issue sql statements to the server and displays results to the screen.

Logical layer:

All the DML statements that are sent from the application layer are parsed and optimized in the query processor.

It is again sub-divided into following layers:

i) Embedded DML pre-compiler:

When a request is received from a client in the application layer, it is the responsibility of the embedded DML (Data Manipulation Language) pre-compiler to extract the relevant SQL statements embedded in the client API commands, or to translate the client commands into the corresponding SQL statements.

ii) DDL Compiler:

· Request received from the administrator are processed by the DDL Compiler.

· The administrative utility does not expose any interface and hence executed directly by the server.

iii) Query Preprocessor :

· The query preprocessor parses the query. The parsing is of 2 types.

 1) Syntactical

 2) Semantical
· If the query syntax is right then it is sent to the next pipe . Else it inform to the client with an a error message.

iv) Query Optimizer:

· Query optimizer is the brain of the MySQL.

· Once client has permission to execute query the query is optimized by the query optimizer. The task of the query optimizer is analyze the processed query to see if it can take advantage of any optimizations that will allow it to process the query more quickly. MySQL query optimizer uses indexes.

v) Execution Engine:

· Once the query is optimized it is handed over the respective storage engine under the executable engine. The utilities received from the administrator (repair , etc) are handed here directly.
Transaction Management:

i) Transaction Manager:

A transaction is a single unit of work that has one or more MySQL commands in it. The transaction manager is responsible for making sure that the transaction is logged and executed atomically. And also prevents from deadlocks. Furthermore, the transaction manager is responsible for issuing the COMMIT and the ROLLBACK SQL commands. The COMMIT command commits to performing a transaction. Thus, a transaction is incomplete until it is committed to. The ROLLBACK command is used when a crash occurs during the execution of a transaction. If a transaction were left incomplete, the ROLLBACK command would undo all changes made by that transaction. The result of executing this command is restoring the database to its last stable state.

· Ensures Atomicity

· Avoids Deadlocks

· Responsible for Commit & Rollback

ii) Concurrency- Control Manager

The concurrency-control manager is responsible for making sure that transactions are executed separately and independently. It does so by acquiring locks. Once the lock is acquired, only the operations in one transaction can manipulate the data. If a different transaction tries to manipulate the same locked data, the concurrency-control manager rejects the request until the first transaction is complete .

Recovery Management

iii) Log Manager:

The log manager is responsible for logging every operation executed in the database. It does so by storing the log on disk through the buffer manager. The operations in the log are stored as MySQL commands. Thus, in the case of a system crash, executing every command in the log will bring back the database to its last stable state.

iv) Recovery Manager

The recovery manager is responsible for restoring the database to its last stable state. It does so by using the log for the database, which is acquired from the buffer manager, and executing each operation in the log. Since the log manager logs all operations performed on the database (from the beginning of the database’s life), executing each command in the log file would recover the database to its last stable state.

Storage Management:

 Storage is physically done on some type of secondary storage, however dynamic access of this medium is not practical. Thus, all work is done through a number of buffers. The buffers reside in main and virtual memory and are managed by a Buffer Manager.

i) Resource Manager:

The purpose of the Resource Manager is to accept requests from the execution engine, put them into table requests, and request the tables from the Buffer Manager. The Resource Manager receives references to data within memory from the Buffer Manager and returns this data to the upper layers.

· Mediator between Execution Engine and Buffer Manager.

ii) Buffer Manager:

The role of the Buffer Manager is to allocate memory resources for the use of viewing and manipulating data. The Buffer Manager takes in formatted requests and decides how much memory to allocate per buffer and how many buffers to allocate per request. All requests are made from the Resource Manager.

(key_buffer, sort_buffer, myisam_sort_buffer)

iii) Storage Manager:

The storage manager acts as a mediator to send request between buffer manager and secondary storage.

2. MySQL Installation

2.1. Installing MySQL from RPM Packages on Linux

For non-RPM Linux distributions, you can install MySQL using a .tar.gz package.

MySQL-server-VERSION.glibc23.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running on another machine.

MySQL-client-VERSION.glibc23.i386.rpm

The standard MySQL client programs. You probably always want to install this package to connect to the servers.

MySQL-devel-VERSION.glibc23.i386.rpm

The libraries and include files that are needed if you want to compile other MySQL clients, such as the Perl modules.

MySQL-shared-VERSION.glibc23.i386.rpm

This package contains the shared libraries (libmysqlclient.so*) that certain languages and applications need to dynamically load and use MySQL. It contains single-threaded and thread-safe libraries. If you install this package, do not install the MySQL-shared-compat package.

MySQL-shared-compat-VERSION.glibc23.i386.rpm

This package includes the shared libraries for MySQL 3.23, 4.0, and so on, up to the current release. It contains single-threaded and thread-safe libraries. Install this package instead of MySQL-shared if you have applications installed that are dynamically linked against older versions of MySQL but you want to upgrade to the current version without breaking the library dependencies.

2.2. Installing MySQL from a Standard Source Distribution

	Directory
	Contents of Directory

	bin
	Client programs and scripts

	Var
	Log files, databases

	docs
	Manual in Info format

	man
	Unix manual pages

	Include/mysql
	Include (header) files

	Lib/mysql
	Libraries

	Libexec
	The mysqld server

	share/mysql

	Miscellaneous support files, including error messages, sample configuration files, SQL for database installation

	sql-bench
	Benchmarks

Preconfiguration setup

shell> groupadd mysql

shell> useradd -g mysql mysql

Beginning of source-build specific instructions

shell> tar zxvf mysql-VERSION.tar.gz

shell> cd mysql-VERSION

shell> ./configure --prefix=/usr/local/mysql

shell> make

shell> make install

End of source-build specific instructions

Postinstallation setup

shell> cd /usr/local/mysql

shell> chown -R mysql .

shell> chgrp -R mysql .

shell> bin/mysql_install_db --user=mysql

shell> chown -R root .

shell> chown -R mysql var

Next command is optional

shell> cp support-files/my-medium.cnf /etc/my.cnf

shell> bin/mysqld_safe --user=mysql &

Next command is optional

shell> cp support-files/mysql.server /etc/init.d/mysql.server

2.3 Installing MySQL from Generic Binaries on Unix/Linux

	Directory
	Contents of Directory

	bin
	Client programs and the mysqld server

	data
	Log files, databases

	docs
	Manual in Info format

	man
	Unix manual pages

	include
	Include (header) files

	Lib
	Libraries

	scripts
	mysql_install_db

	share
	Miscellaneous support files, including error messages, sample configuration files, SQL for database installation

	sql-bench
	Benchmarks

shell> groupadd mysql

shell> useradd -r -g mysql mysql

shell> cd /usr/local

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

shell> ln -s full-path-to-mysql-VERSION-OS mysql

shell> cd mysql

shell> chown -R mysql .

shell> chgrp -R mysql .

shell> scripts/mysql_install_db --user=mysql

shell> chown -R root .

shell> chown -R mysql data

Next command is optional

shell> cp support-files/my-medium.cnf /etc/my.cnf

shell> bin/mysqld_safe --user=mysql &

Next command is optional

shell> cp support-files/mysql.server /etc/init.d/mysql.server

2.4 Setting Environment Variables

vi .bash_profile

export MySQL_HOME=/usr/local/mysql

#PATH=$PATH:$HOME/bin

PATH=$PATH:$HOME/bin:$MySQL_HOME

export MYSQL_HOME='localhost'

export USER='localhost'

Only on Win and Netware

export MYSQL_PWD='localhost'

3. MySQL Installation related Programs

3.1. mysql_fix_privilege_tables is an older script that previously was used to uprade the system tables in the mysql database after a MySQL upgrade.

As of MySQL 5.0.19, mysql_fix_privilege_tables is superseded by mysql_upgrade, which should be used instead.

Before running mysql_fix_privilege_tables, make a backup of your mysql database.

On Unix or Unix-like systems, update the system tables by running the mysql_fix_privilege_tables script:

shell> mysql_fix_privilege_tables --password=XXX

3.2. mysql_install_db initializes the MySQL data directory and creates the system tables that it contains, if they do not exist.

shell> bin/mysql_install_db --user=mysql --basedir=/opt/mysql/mysql –datadir=/opt/mysql/mysql/data

bootstrap This option is used by the mysql_install_db script to create the MySQL privilege tables without having to start a full MySQL server

3.3. mysql_secure_installation

This program enables you to improve the security of your MySQL installation in the following ways:

· You can set a password for root accounts.

· You can remove root accounts that are accessible from outside the local host.

· You can remove anonymous-user accounts.

· You can remove the test database (which by default can be accessed by all users, even anonymous users)

shell> mysql_secure_installation

3.4. mysql_tzinfo_to_sql

The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used on systems that have a zoneinfo database (the set of files describing time zones). Examples of such systems are Linux, FreeBSD, Solaris, and Mac OS X. One likely location for these files is the “/usr/share/zoneinfo” directory

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

4. MySQL Server and Server-Startup Programs:

4.1. mysqld — The MySQL Server

mysqld, also known as MySQL Server, is the main program that does most of the work in a MySQL installation. MySQL Server manages access to the MySQL data directory that contains databases and tables. The data directory is also the default location for other information such as log files and status files.

When MySQL server starts, it listens for network connections from client programs and manages access to databases on behalf of those clients.

The mysqld program has many options that can be specified at startup. For a complete list of options, run this command:

shell> mysqld --verbose –help

Command to start mysql

shell> mysqld –user=mysql

//
(--console)

MySQL Server also has a set of system variables that affect its operation as it runs. System variables can be set at server startup, and many of them can be changed at runtime to effect dynamic server reconfiguration. MySQL Server also has a set of status variables that provide information about its operation. You can monitor these status variables to access runtime performance characteristics.

4.2. mysqld_safe — MySQL Server Startup Script

mysqld_safe is the recommended way to start a mysqld server on Unix and NetWare. mysqld_safe adds some safety features such as restarting the server when an error occurs and logging runtime information to an error log file.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in option files.

The mysqld_safe script is written so that it normally can start a server that was installed from either a source or a binary distribution of MySQL, even though these types of distributions typically install the server in slightly different locations. (See Section 2.7, “Installation Layouts”.) mysqld_safe expects one of the following conditions to be true:

The server and databases can be found relative to the working directory (the directory from which mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory for bin and data directories. For source distributions, it looks for libexec and var directories. This condition should be met if you execute mysqld_safe from your MySQL installation directory (for example, /usr/local/mysql for a binary distribution).

If the server and databases cannot be found relative to the working directory, mysqld_safe attempts to locate them by absolute path names. Typical locations are /usr/local/libexec and /usr/local/var. The actual locations are determined from the values configured into the distribution at the time it was built. They should be correct if MySQL is installed in the location specified at configuration time.

--basedir=path

The path to the MySQL installation directory.

--help

Display a help message and exit

--defaults-extra-file=path

The name of an option file to be read in addition to the usual option files.

--log-error=file_name

Write the error log to the given file

--ledir=path

If mysqld_safe cannot find the server, use this option to indicate the path name to the
directory where the server is located

--no-defaults

Do not read any option files. This must be the first option on the command line if it is used.

--defaults-file=file_name

The name of an option file to be read instead of the usual option files. This must be the first
option on the command line if it is used.

--mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server
program name. The basename is assumed to be mysqld. For example, if you use --mysqld-
version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the
argument to --mysqld-version is empty,mysqld_safe uses mysqld in the ledir directory.

--open-files-limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit
-n. Note that you need to start mysqld_safe as root for this to work properly!

--pid-file=file_name

The path name of the process ID file.

--port=port_num

The port number that the server should use when listening for TCP/IP connections. The port
number must be 1024 or higher unless the server is started by the root system user.

--socket=path

The Unix socket file that the server should use when listening for local connections.

4.3. mysql.server — MySQL Server Startup Script

MySQL distributions on Unix include a script named mysql.server
. It can be used on systems such as Linux and Solaris that use System V-style run directories to start and stop system services. It is also used by the Mac OS X Startup Item for MySQL. mysql.server can be found in the support-files directory under your MySQL installation directory or in a MySQL source distribution.

--basedir=path

The path to the MySQL installation directory.

--datadir=path

The path to the MySQL data directory.

--pid-file=file_name

The path name of the file in which the server should write its process ID.

--service-startup-timeout=file_name

How long in seconds to wait for confirmation of server startup. If the server does not start
within this time, mysql.server exits with an error. The default value is 900. A value of 0 means
not to wait at all for startup. Negative values mean to wait forever (no timeout). This option was
added in MySQL 5.1.17. Before that, a value of 900 is always used.

--use-mysqld_safe

Use mysqld_safe to start the server. This is the default.

--user=user_name

The login user name to use for running mysqld.

4.4. mysqld_multi ― Manage Multiple MySQL Servers

We will go through this in Chapter 12.

5. User Account Management

We can create User Accounts in two ways.

 1. By using CREATE USER or GRANT statements. (Recommended Method)

 2. By manipulating the mysql grant tables with statements like INSERT and DELETE.

Using CREATE USER and GRANT statements:

Creating a User:

By using CREATE USER statement we can just create users and we cannot grant privileges to the user. To use this statement you should have CREATE USER privilege.

For Single user:

Syntax: CREATE USER <username> IDENTIFIED BY <password> ;

For Multiple user:

Syntax: CREATE USER <username> IDENTIFIED BY <password>, <username>

IDENTIFIED BY <password>, <username> IDENTIFIED BY <password>........... ;

Using GRANT statement we can create users and as well as we can grant privileges to the users. For using this statement you should have GRANT privilege and you should have privileges that you are granting for others.

This statement can be used in many ways. Some examples of them are:

 1. mysql> GRANT ALL PRIVILEGES ON *.* TO 'username'@'hostname' IDENTIFIED BY <password> WITH GRANT OPTION;

The above statement grants all privileges on all databases to specified user name and host name.

If the use name doesn't exists it create a user and grants privileges and if the user exists the password is also changed.

If you do not want to change the password use the below query

 mysql> GRANT ALL PRIVILEGES ON *.* TO 'username'@'hostname' ;

 2. mysql> GRANT SELECT, INSERT, UPDATE ON *.* TO 'username'@'hostname' IDENTIFIED BY <password>;

The above statement grants SELECT, INSERT, UPDATE privileges on all databases to specified user name and host name.

 3. mysql> GRANT SELECT, INSERT, UPDATE ON DB1.* TO 'username'@'hostname';

The above statement grants SELECT, INSERT, UPDATE privileges on DB1 database to specified user name and host name.

 4. mysql> GRANT SELECT, INSERT, UPDATE ON DB1.TBL1 TO 'username'@'hostname';

The above statement grants SELECT, INSERT, UPDATE privileges on DB1.TBL1 table to specified user name and host name.

 5. mysql> GRANT ALL PRIVILEGES ON *.* TO 'username'@'hostname' WITH

MAX QUERIES PER HOUR 50

MAX UPDATES PER HOUR 15

MAX CONNECTIONS PER HOUR 3

MAX USER CONNECTIONS 2;

The above statement grants all privileges on all databases to specified user name and host name and restricts user resources. By the above query the user can only execute 50 queries per hour, 15 update queries per hour, and can connect max 3 times in an hour and the user can have only 2 simultaneous connections.

Renaming a User:

To rename a user you must have global CREATE USER privilege. Renaming a user does not automatically migrate all the objects that the user has created.

For Single user:

Syntax: RENAME USER <old_username> TO <new_username> ;

For Multiple user:

Syntax: RENAME USER <old_username> TO <new_username>, <old_username> TO <new_username>, <old_username> TO <new_username>.......;

Revoking Privileges:

mysql> REVOKE ALL PRIVILEGES FROM <username>;

The above statement revokes all privileges for the specified user.

mysql> REVOKE ALL PRIVILEGES ON DB1.* FROM <username>;

The above statement revokes all privileges on DB1 database for the specified user.

mysql> REVOKE ALL PRIVILEGES ON DB1.TBL1 FROM <username>;

The above statement revokes all privileges on DB1.TBL1 table database for the specified user.

Setting Password:

The below statement is used to set/update user password. In case if the user forgets his password we can use this statement to reset the password.

Syntax: SET PASSWORD FOR '<username>'@'<host name>' = PASSWORD('<password>');

Removing User:

To drop a user you should have global CREATE USER privilege. Dropping a user does not automatically close any opened sessions and it does not automatically delete the objects created by the user.

Syntax: DROP USER username;

IMP: After every DML Command on grant tables we need to issue FLUSH PRIVILEGES Command. Otherwise the permission will not effect until the MySQL Server is restarted.

To execute FLUSH PRIVILEGES you need to have the RELOAD privilege.

Once the MySQL Server is started it will store all the grant tables in the memory. After every GRANT, REVOKE statements it will reload the grant tables. But by using the DML commands it doesn't reload the tables. This may be the reason DML commands on grant tables are not recommended.

Creating a User:

If you want just to create a user, insert a row in mysql.user table providing values for host and user. For this you need to have a INSERT privilege on mysql.user table.

Syntax: INSERT INTO user (host, user) VALUES ('<host name>', '<user name>');

Granting Global Privileges:

To grant all privileges on all the databases insert a row into the mysql.user table.

Syntax: INSERT INTO user (host, user, password, Select_priv, Insert_priv, Update_priv, Delete_priv, Create_priv, Drop_priv, Reload_priv, Shutdown_priv, Process_priv, File_priv, Grant_priv, References_priv, Index_priv, Alter_priv, Show_db_priv, Super_priv, Create_tmp_table_priv, Lock_tables_priv, Execute_priv, Repl_slave_priv, Repl_client_priv, Create_view_priv, Show_view_priv, Create_routine_priv, Alter_routine_priv, Create_user_priv) VALUES ('<hostname>', '<username>', password('<password>', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y'));

In the above statement if you doesn't want to give any privileges we can set the flag as 'N'.

Also we can set below values in the same table.

max_questions

--> Defines max queries for the user per hour.

max_updates

--> Defines max updates for the user per hour.

max_connections

--> Defines max connections for the user per hour.

max_user_connections

--> Defines max simultaneous connections by the user .

Granting Database Level Privileges:

If you want to grant privileges on database level we need to insert a row in mysql.db table. For this the user need to have INSERT privilege on mysql.db table.

Before Inserting a row in this table a row in mysql.user table need to be inserted for the respective user with all the privileges as “N”.

Granting Table Level Privileges:

If you want to grant privileges on table level we need to insert a row in mysql.tables_priv table. For this the user need to have INSERT privilege on mysql.tables_priv table.

Before Inserting a row in this table a row in mysql.user table need to be inserted for the respective user with all the privileges as “N”.

Revoking Privileges:

If you want to revoke global privileges for user just set value as 'N' in mysql.user table for respective privilege.

If you want to revoke some database level privileges for a user just set value as 'N' in mysql.db table for respective privilege or if you want to revoke entire privileges on a particular database just delete the row from mysql.db table for specified user and db.

If you want to revoke some table level privileges for a user update table_priv field on mysql.tables_priv table or if you want to revoke entire privileges on a particular table just delete the row from mysql.tables_priv table for specified user, db and table.

Setting Password:

If you want set/update a password execute the below statement.

Syntax: mysql> UPDATE mysql.user SET password = PASSWORD('<password>');

Removing User:

Deleting a user need to remove rows from three tables.

1. Delete a record from mysql.user table.

2. Delete records from mysql.db table.

3. Delete records from mysql.tables_priv table.

Syntax: mysql> DELETE FROM mysql.user WHERE user = '<username>';

 mysql> DELETE FROM mysql.db WHERE user = '<username>';

 mysql> DELETE FROM mysql.tables_priv WHERE user = '<username>';

Resetting Administrator Password:

If the administrator forgets the password restart the MySQL Server with --skip-grant-tables option.

By this the MySQL stops loading the grant tables and we can login to the MySQL without any password. There you can update password in mysql.user table and start MySQL Server as usual.

Follow below steps:

[shell]# /etc/init.d/mysqld stop

[shell]# /etc/init.d/mysqld start --skip-grant-tables

[shell]# mysql

mysql> UPDATE mysql.user SET password = PASSWORD('new password') WHERE user = '<username>' AND host = '<host name>';

mysql> \q

[shell]# /etc/init.d/mysqld restart

6. Storage Engines

6.1 Comparing Transaction and Nontransaction Engines

· Transaction-safe tables (TSTs) have several advantages over nontransaction-safe tables (NTSTs):

· They are safer. Even if MySQL crashes or you get hardware problems, the database will be in a consistency form.

· You can combine many statements and accept them all at the same time with the COMMIT statement (if autocommit is disabled).

· You can execute ROLLBACK to ignore your changes (if autocommit is disabled).

· If an update fails, all of your changes are reverted. (With nontransaction-safe tables, all changes that have taken place are permanent.)

· Transaction-safe storage engines can provide better concurrency for tables that get many updates concurrently with reads.

· You can combine transaction-safe and nontransaction-safe tables in the same statements to get the best result. However, although MySQL supports several transaction-safe storage engines, for best results, you should not mix different storage engines within a transaction with autocommit disabled. For example, if you do this, changes to nontransaction-safe tables still are committed immediately and cannot be rolled back.

Nontransaction-safe tables have several advantages of their own, all of which occur because there is no transaction overhead:

· Much faster

· Lower disk space requirements

· Less memory required to perform updates

6.2 Setting the Storage Engine

When you create a new table, you can specify which storage engine to use by adding an ENGINE table option to the CREATE TABLE statement:

mysql> CREATE TABLE t (i INT) ENGINE = INNODB;

If you omit the ENGINE option, the default
 engine is used. Normally, this is MyISAM, but you can change it by using the --default-storage-engine server startup option, or by setting the default-storage-engine option in the my.cnf configuration file.

You can set the default storage engine to be used during the current session by setting the storage_engine variable:

mysql> SET storage_engine=MYISAM;

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates the new engine:

mysql> ALTER TABLE t ENGINE = MYISAM;

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL instead creates a table using the default storage engine. This behavior is convenient when you want to copy tables between MySQL servers that support different storage engines. (For example, in a replication setup, perhaps your master server supports transactional storage engines for increased safety, but the slave servers use only non-transactional storage engines for greater speed.)

A warning is generated whenever a storage engine is automatically changed. To prevent this from happening if the desired engine is unavailable, enable the NO_ENGINE_SUBSTITUTION SQL mode. In this case, an error occurs instead of a warning and the table is not created or altered if the desired engine is unavailable.

A database may contain tables of different types. That is, tables need not all be created with the same storage engine.

6.3. The MyISAM Storage Engine

MyISAM is the default storage engine still 5.1.X version, from 5.5.X InnoDB is the default storage engine. It is based on the older (and no longer available) ISAM storage engine but has many useful extensions.

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name and have an extension to indicate the file type. An .frm file stores the table format. The data file has an .MYD (MYData) extension. The index file has an .MYI (MYIndex) extension.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

mysql> CREATE TABLE t (i INT) ENGINE = MYISAM;

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can also compress MyISAM tables with myisampack to take up much less space.

MyISAM tables have the following characteristics:

· There is a limit of 232 (~4.295E+09) rows in a MyISAM table. If you build MySQL with the --with-big-tables option, the row limitation is increased to (232)2 (1.844E+19) rows.

· The maximum number of indexes per MyISAM table is 64. This can be changed by recompiling. Beginning with MySQL 5.1.4, you can configure the build by invoking configure with the --with-max-indexes=N option, where N is the maximum number of indexes to permit per MyISAM table. N must be less than or equal to 128.

 The maximum number of columns per index is 16.

· The maximum key length is 1000 bytes. This can also be changed by changing the source and recompiling.

· There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If mysqld is started with the --myisam-recover option, MyISAM tables are automatically checked when opened, and are repaired if the table wasn't closed properly.

· Tables can be repaired.

· You can put the data file and index file in different directories on different physical devices to get more speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE.

6.3.1. MyISAM Startup Options

The following options to mysqld can be used to change the behavior of MyISAM tables.

bulk_insert_buffer_size

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT, INSERT ... VALUES (...), (...), ..., and LOAD DATA INFILE when adding data to nonempty tables. This variable limits the size of the cache tree in bytes per thread. Setting it to 0 disables this optimization. The default value is 8MB.

Allocated per each session.

concurrent_insert

If 1 (the default), MySQL permits INSERT and SELECT statements to run concurrently for MyISAM tables that have no free blocks in the middle of the data file. If you start mysqld with --skip-new, this variable is set to 0.

This variable can take three integer values.

	Value
	Description

	0
	Disables concurrent inserts

	1
	(Default) Enables concurrent insert for MyISAM tables that do not have holes

	2
	Enables concurrent inserts for all MyISAM tables, even those that have holes. For a table with a hole, new rows are inserted at the end of the table if it is in use by another thread. Otherwise, MySQL acquires a normal write lock and inserts the row into the hole.

delay_key_write

This option applies only to MyISAM tables. It can have one of the following values to affect handling of the DELAY_KEY_WRITE table option that can be used in CREATE TABLE statements.

	Option
	Description

	OFF
	DELAY_KEY_WRITE is ignored.

	ON
	MySQL honors any DELAY_KEY_WRITE option specified in CREATE TABLE statements. This is the default value.

	ALL
	All new opened tables are treated as if they were created with the DELAY_KEY_WRITE option enabled.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on every index update, but only when the table is closed. This speeds up writes on keys a lot, but if you use this feature, you should add automatic checking of all MyISAM tables by starting the server with the --myisam-recover

key_buffer_size

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is the size of the buffer used for index blocks. The key buffer is also known as the key cache.

The maximum permissible setting for key_buffer_size is 4GB on 32-bit platforms. As of MySQL 5.1.23, values larger than 4GB are permitted for 64-bit platforms, except 64-bit Windows prior to MySQL 5.1.31, for which large values are truncated to 4GB with a warning. As of MySQL 5.1.31, values larger than 4GB are also permitted for 64-bit Windows. The effective maximum size might be less, depending on your available physical RAM and per-process RAM limits imposed by your operating system or hardware platform

25% of the machine's total memory is an acceptable value for this variable. However, you should be aware that, if you make the value too large (for example, more than 50% of the machine's total memory), your system might start to page and become extremely slow. This is because MySQL relies on the operating system to perform file system caching for data reads, so you must leave some room for the file system cache. You should also consider the memory requirements of any other storage engines that you may be using in addition to MyISAM.

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache individually, not as a group.

key_cache_block_size

The size in bytes of blocks in the key cache. The default value is 1024.

(Range 512-16384)

myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be larger than this value, the index is created using the key cache instead, which is slower. The value is given in bytes.

The default value is 2GB (Max valve depends on ur disk size). If MyISAM index files exceed this size and disk space is available, increasing the value may help performance. The space must be available in the file system containing the directory where the original index file is located.

--myisam-recover

Set the MyISAM storage engine recovery mode. The option value is any combination of the values of DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by commas. Specifying the option with no argument is the same as specifying DEFAULT, and specifying with an explicit value of "" disables recovery (same as not giving the option). If recovery is enabled, each time mysqld opens a MyISAM table, it checks whether the table is marked as crashed or was not closed properly. (The last option works only if you are running with external locking disabled.) If this is the case, mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair it.

The following options affect how the repair works.

	Option
	Description

	DEFAULT
	Recovery without backup, forcing, or quick checking.

	BACKUP
	If the data file was changed during recovery, save a backup of the tbl_name.MYD file as tbl_name-datetime.BAK.

	FORCE
	Run recovery even if we would lose more than one row from the .MYD file.

	QUICK
	Do not check the rows in the table if there are not any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you want to be able to recover from most problems without user intervention, you should use the options BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the old data file as a backup so that you can later examine what happened.

If the recovery wouldn't be able to recover all rows from previously completed statements and you didn't specify FORCE in the value of the --myisam-recover option, automatic repair aborts with an error message in the error log:

Error: Couldn't repair table: db.table

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./db/table

myisam_repair_threads

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own thread) during the Repair by sorting process. The default value is 1.

Note: Multi-threaded repair is still beta-quality code.

tmp_table_size

The maximum size of internal in-memory temporary tables. (The actual limit is determined as the minimum of tmp_table_size and max_heap_table_size.) If an in-memory temporary table exceeds the limit, MySQL automatically converts it to an on-disk MyISAM table. Increase the value of tmp_table_size (and max_heap_table_size if necessary) if you do many advanced GROUP BY queries and you have lots of memory. This variable does not apply to user-created MEMORY tables.

You can compare the number of internal on-disk temporary tables created to the total number of internal temporary tables created by comparing the values of the Created_tmp_disk_tables and Created_tmp_tables variables.

Space Needed for Keys:

MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as (key_length+4)/0.67, summed

over all keys. This is for the worst case when all keys are inserted in sorted order and the table doesn't have any compressed keys.

6.3.2. MyISAM Table Storage Formats:

MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen automatically depending on the type of columns you are using. The third, compressed format, can be created only with the myisampack utility

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you can force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack

6.3.2.1. Static (Fixed-Length) Table Characteristics:

Static format is the default for MyISAM tables. It is used when the table contains no variable-length columns (VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file can be found on disk: To look up a row based on a row number in the index, multiply the row number by the row length to calculate the row position. Also, when scanning a table, it is very easy to read a constant number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it can usually reclaim all rows except the partially written one. Note that MyISAM table indexes can always be reconstructed based on the data rows.

Note: Fixed-length row format is only available for tables without BLOB or TEXT columns. Creating a table with these columns with an explicit ROW_FORMAT clause will not raise an error or warning; the format specification will be ignored.

Static-format tables have these characteristics:

· CHAR and VARCHAR columns are space-padded to the specified column width, although the column type is not altered. BINARY and VARBINARY columns are padded with 0x00 bytes to the column width.

· Very quick.

· Easy to cache.

· Easy to reconstruct after a crash, because rows are located in fixed positions.

· Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

· Usually require more disk space than dynamic-format tables.

6.3.2.2. Dynamic Table Characteristics:

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR, VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.

Dynamic format is a little more complex than static format because each row has a header that indicates how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is made longer as a result of an update.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length columns that you access or change frequently in a table that also contains some variable-length columns, it might be a good idea to move the variable-length columns to other tables just to avoid fragmentation.

Dynamic-format tables have these characteristics:

- All string columns are dynamic except those with a length less than four.

· Each row is preceded by a bitmap that indicates which columns contain the empty string (for string columns) or zero (for numeric columns). Note that this does not include columns that contain NULL values. If a string column has a length of zero after trailing space removal, or a numeric column has a value of zero, it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a length byte plus the string contents.

· Much less disk space usually is required than for fixed-length tables.

· Each row uses only as much space as is required. However, if a row becomes larger, it is split into as many pieces as are required, resulting in row fragmentation. For example, if you update a row with information that extends the row length, the row becomes fragmented. In this case, you may have to run OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use myisamchk -ei to obtain table statistics.

· More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented into many pieces and links (fragments) may be missing.

· The expected row length for dynamic-sized rows is calculated using the following expression:

3+ (number of columns + 7) / 8

+ (number of char columns)

+ (packed size of numeric columns)

+ (length of strings)

+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in the same link. If not, another link is created. You can find the number of links using myisamchk -ed. All links may be removed with OPTIMIZE TABLE or myisamchk -r.

6.3.3. MyISAM Table Problems:

The file format that MySQL uses to store data has been extensively tested, but there are always circumstances that may cause database tables to become corrupted. The following discussion describes how this can happen and how to handle it.

· The mysqld process is killed in the middle of a write.

· An unexpected computer shutdown occurs (for example, the computer is turned off).

· Hardware failures.

· You are using an external program (such as myisamchk) to modify a table that is being modified by the server at the same time.

· A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a corrupted MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check or repair a table with the myisamchk command.

If your tables become corrupted frequently, you should try to determine why this is happening. The most important thing to know is whether the table became corrupted as a result of a server crash. You can verify this easily by looking for a recent restarted mysqld message in the error log. If there is such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption may have occurred during normal operation. This is a bug. You should try to create a reproducible test case that demonstrates the problem.

Problems from Tables Not Being Closed Properly:

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a table has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it means that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the table.

The counter works as follows:

· The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

· The counter is not changed during further updates.

· When the last instance of a table is closed (because a FLUSH TABLES operation was performed or because there is no room in the table cache), the counter is decremented if the table has been updated at any point.

· When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

· To avoid problems with interaction with other processes that might check the table, the counter is not decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

· A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

· MySQL has crashed between an update and the final close. (Note that the table may still be okay, because MySQL always issues writes for everything between each statement.)

· A table was modified by myisamchk --recover or myisamchk --update-state at the same time that it was in use by mysqld.

· Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK TABLE, although you might get the warning from other servers. However, REPAIR TABLE should be avoided because when one server replaces the data file with a new one, this is not known to the other servers.

In general, it is a bad idea to share a data directory among multiple servers.

6.4. The InnoDB Storage Engine

InnoDB is a transaction-safe (ACID compliant) storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to protect user data. InnoDB row-level locking (without escalation to coarser granularity locks) and Oracle-style consistent nonlocking reads increase multi-user concurrency and performance. To maintain data integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints. You can freely mix InnoDB tables with tables from other MySQL storage engines, even within the same statement.

To determine whether your server supports InnoDB use the SHOW ENGINES statement.

The InnoDB storage engine maintains its own buffer pool for caching data and indexes in main memory. InnoDB stores its tables and indexes in a tablespace, which may consist of several files (or raw disk partitions). This is different from, for example, MyISAM tables where each table is stored using separate files. InnoDB tables can be very large even on operating systems where file size is limited to 2GB.

6.4.1. Configuring InnoDB

The first decisions to make about InnoDB configuration involve how to lay out InnoDB data files, and how much memory to allocate for the InnoDB storage engine. You record these choices either by recording them in a configuration file that MySQL reads at startup, or by specifying them as command-line options in a startup script.

Two important disk-based resources managed by the InnoDB storage engine are its tablespace data files and its log files. If you specify no InnoDB configuration options, MySQL creates an auto-extending 10MB data file named ibdata1 and two 5MB log files named ib_logfile0 and ib_logfile1 in the MySQL data directory. To get good performance, explicitly provide InnoDB parameters.

Considerations for Storage Devices:

Database performance improves if the data is not all placed on the same physical disk. Putting log files on a different disk from data is very often beneficial for performance. The example illustrates how to do this. It places the two data files on different disks and places the log files on the third disk. InnoDB fills the tablespace beginning with the first data file. You can also use raw disk partitions (raw devices) as InnoDB data files, which may speed up I/O.

6.4.2. InnoDB Table and Index Structures

MySQL stores its data dictionary information for tables in .frm files in database directories. This is true for all MySQL storage engines, but every InnoDB table also has its own entry in the InnoDB internal data dictionary inside the tablespace. When MySQL drops a table or a database, it has to delete one or more .frm files as well as the corresponding entries inside the InnoDB data dictionary. Consequently, you cannot move InnoDB tables between databases simply by moving the .frm files.

6.4.3. Adding, Removing, or Resizing InnoDB Data and Log Files

To set up the InnoDB tablespace files, use the innodb_data_file_path option in the [mysqld] section of the my.cnf

option file. On Windows, you can use my.ini instead. The value of innodb_data_file_path should be a list of one or more data file specifications. If you name more than one data file, separate them by semicolon (“;”) characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For example, the following setting explicitly creates a tablespace having the same characteristics as the default:

[mysqld]

innodb_data_file_path=ibdata1:10M:autoextend

This setting configures a single 10MB data file named ibdata1 that is auto-extending. No location for the file is given, so by default, InnoDB creates it in the MySQL data directory. Sizes are specified using K, M, or G suffix letters to indicate units of KB, MB, or GB.

A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending file named ibdata2 in the data directory can be configured like this:

[mysqld]

innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The autoextend and max attributes can be used only for the last data file in the innodb_data_file_path line. If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs out of free space in the tablespace.

The increment is 8 MB at a time by default, To modify the increment, change the innodb_autoextend_increment system variable.

InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the maximum file size is a small value such as 2GB. To specify a maximum size for an auto-extending data file, use the max attribute following the autoextend attribute. Use the max attribute only in cases where constraining disk usage is of critical importance, because exceeding the maximum size causes a fatal error, possibly including a crash. The following configuration permits ibdata1 to grow up to a limit of 500MB.

[mysqld]

innodb_data_file_path=ibdata1:10M:autoextend:max:500M

InnoDB creates tablespace files in the MySQL data directory by default. To specify a location explicitly, use the innodb_data_home_dir option. For example, to use two files named ibdata1 and ibdata2 but create them in the /ibdata directory, configure InnoDB like this:

[mysqld]

innodb_data_home_dir = /ibdata

innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note: InnoDB does not create directories, so make sure that the /ibdata directory exists before you start the server. This is also true of any log file directories that you configure. Use the Unix or DOS mkdir command to create any neces-sary directories. Make sure that the MySQL server has the proper access rights to create files in the data directory. More generally, the server must have access rights in any directory where it needs to create data files or log files.

InnoDB forms the directory path for each data file by textually concatenating the value of innodb_data_home_dir to the data file name, adding a path name separator (slash or backslash) between values if necessary. If the innodb_data_home_dir option is not mentioned in my.cnf at all, the default value is the “dot” directory ./, which means the MySQL data directory. (The MySQL server changes its current working directory to its data directory when it begins executing.)

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for the data files listed in the innodb_data_file_path value. The following example is equivalent to the preceding one:

[mysqld]

innodb_data_home_dir =

innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend

When you add a new file to the tablespace configuration, make sure that it does not exist. InnoDB will create and initialize the file when you restart the server.

Currently, you cannot remove a data file from the tablespace. To decrease the size of your tablespace, use this procedure:

1. Use mysqldump to dump all your InnoDB tables.

2. Stop the server.

3. Remove all the existing tablespace files, including the ibdata and ib_log files. If you want to keep a backup copy of the information, then copy all the ib* files to another location before the removing the files in your MySQL installation.

4. Remove any .frm files for InnoDB tables.

5. Configure a new tablespace.

6. Restart the server.

7. Import the dump files.

If you want to change the number or the size of your InnoDB log files, use the following instructions. The procedure to use depends on the value of innodb_fast_shutdown:

If innodb_fast_shutdown is not set to 2: Stop the MySQL server and make sure that it shuts down without errors (to ensure that there is no information for outstanding transactions in the log). Copy the old log files into a safe place in case something went wrong during the shutdown and you need them to recover the tablespace. Delete the old log files from the log file directory, edit my.cnf to change the log file configuration, and start the MySQL server again. mysqld sees that no InnoDB log files exist at startup and creates new ones.

If innodb_fast_shutdown is set to 2: Set innodb_fast_shutdown to 1:

mysql> SET GLOBAL innodb_fast_shutdown = 1;

Then follow the instructions in the previous item.

Determining the Maximum Memory Allocation for InnoDB:

On 32-bit GNU/Linux x86, be careful not to set memory usage too high. glibc may permit the process heap to grow over thread stacks, which crashes your server. It is a risk if the value of the following expression is close to or exceeds 2GB.

innodb_buffer_pool_size

+ key_buffer_size

+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)

+ max_connections*2MB

Turning Off InnoDB:

If you do not want to use InnoDB tables, start the server with the --innodb=OFF or --skip-innodb option to disable the InnoDB storage engine. In this case, the server will not start if the default storage engine is set to InnoDB. Use --default-storage-engine to set the default to some other engine if necessary.

Using Per-Table Tablespaces:

You can store each InnoDB table and its indexes in its own file. This feature is called “multiple tablespaces” because in effect each table has its own tablespace.

To enable multiple tablespaces, start the server with the --innodb_file_per_table option. For example, add a line to the [mysqld] section of my.cnf.

[mysqld]

innodb_file_per_table

With multiple tablespaces enabled, InnoDB stores each newly created table into its own tbl_name.ibd file in the database directory where the table belongs. This is similar to what the MyISAM storage engine does, but MyISAM divides the table into a tbl_name.MYD data file and an tbl_name.MYI index file. For InnoDB, the data and the indexes are stored together in the .ibd file. The tbl_name.frm file is still created as usual.

You cannot freely move .ibd files between database directories as you can with MyISAM table files. This is because the table definition that is stored in the InnoDB shared tablespace includes the database name, and because InnoDB must preserve the consistency of transaction IDs and log sequence numbers.

If you remove the innodb_file_per_table line from my.cnf and restart the server, InnoDB creates tables inside the shared tablespace files again.

The --innodb_file_per_table option affects only table creation, not access to existing tables. If you start the server with this option, new tables are created using .ibd files, but you can still access tables that exist in the shared tablespace. If you start the server without this option, new tables are created in the shared tablespace, but you can still access any tables that were created using multiple tablespaces.

Note: InnoDB always needs the shared tablespace because it puts its internal data dictionary and undo logs there. The .ibd files are not sufficient for InnoDB to operate.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE statement:

mysql> RENAME TABLE db1.tbl_name TO db2.tbl_name;

Using Raw Devices for the Shared Tablespace:

You can use raw disk partitions as data files in the shared tablespace. By using a raw disk, you can perform nonbuffered I/O on Windows and on some Unix systems without file system overhead. This may improve performance, but you are advised to perform tests with and without raw partitions to verify whether this is actually so on your system.

When you create a new data file, put the keyword newraw immediately after the data file size in innodb_data_file_path. The partition must be at least as large as the size that you specify. Note that 1MB in InnoDB is 1024 × 1024 bytes, whereas 1MB in disk specifications usually means 1,000,000 bytes.

[mysqld]

innodb_data_home_dir=

innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

The next time you start the server, InnoDB notices the newraw keyword and initializes the new partition. However, do not create or change any InnoDB tables yet. Otherwise, when you next restart the server, InnoDB reinitializes the partition and your changes are lost. (As a safety measure InnoDB prevents users from modifying data when any partition with newraw is specified.)

After InnoDB has initialized the new partition, stop the server, change newraw in the data file specification to raw:

[mysqld]

innodb_data_home_dir=

innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw

Then restart the server and InnoDB permits changes to be made.

When you use a raw disk partition, be sure that it has permissions that enable read and write access by the account used for running the MySQL server. For example, if you run the server as the mysql user, the partition must permit read and write access to mysql. If you run the server with the --memlock option, the server must be run as root, so the partition must permit access to root.

Dealing with InnoDB Initialization Problems:

If InnoDB prints an operating system error during a file operation, usually the problem has one of the following causes:

· You did not create the InnoDB data file directory or the InnoDB log directory.

· mysqld does not have access rights to create files in those directories.

· mysqld cannot read the proper my.cnf or my.ini option file, and consequently does not see the options that you specified.

· The disk is full or a disk quota is exceeded.

· You have created a subdirectory whose name is equal to a data file that you specified, so the name cannot be used as a file name.

· There is a syntax error in the innodb_data_home_dir or innodb_data_file_path value.

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all files created by InnoDB. This means all ibdata files and all ib_logfile files. In case you have already created some InnoDB tables, delete the corresponding .frm files for these tables (and any .ibd files if you are using multiple tablespaces) from the MySQL database directories as well. Then you can try the InnoDB database creation again. It is best to start the MySQL server from a command prompt so that you see what is happening.

6.4.4. InnoDB Startup Options and System Variables

innodb

Enables the InnoDB storage engine, if the server was compiled with InnoDB support.

innodb-status-file

Controls whether InnoDB creates a file named innodb_status.<pid> in the MySQL data directory. If enabled, InnoDB periodically writes the output of SHOW ENGINE INNODB STATUS to this file.

By default, the file is not created. To create it, start mysqld with the --innodb-status-file=1 option. The file is deleted during normal shutdown.

skip-innodb

Disable the InnoDB storage engine.

innodb_additional_mem_pool_size

The size in bytes of a memory pool InnoDB uses to store data dictionary information and other internal data structures. The more tables you have in your application, the more memory you need to allocate here. If InnoDB runs out of memory in this pool, it starts to allocate memory from the operating system, and writes warning messages to the MySQL error log. The default value is 1MB.

innodb_autoextend_increment

The increment size (in MB) for extending the size of an auto-extending shared tablespace file when it becomes full. The default value is 8. This variable does not affect the per-table tablespace files that are created if you use innodb_file_per_table=1.

innodb_buffer_pool_size

The size in bytes of the memory buffer InnoDB uses to cache data and indexes of its tables. The default value is 8MB. The larger you set this value, the less disk I/O is needed to access data in tables. On a dedicated database server, you may set this to up to 80% of the machine physical memory size. However, do not set it too large because competition for physical memory might cause paging in the operating system. Also, the time to initialize the buffer pool is roughly proportional to its size.

innodb_data_file_path

The paths to individual data files and their sizes. The full directory path to each data file is formed by concatenating innodb_data_home_dir to each path specified here. The file sizes are specified in KB, MB, or GB (1024MB) by appending K, M, or G to the size value. The sum of the sizes of the files must be at least 10MB. If you do not specify On some operating systems, files must be less than 2GB. If you do not specify innodb_data_file_path, the default behavior starting from 4.0 is to create a single 10MB auto-extending data file named ibdata1. Starting from 3.23.44, you can set the file size larger than 4GB on those operating systems that support big files. You can also use raw disk partitions as data files.

innodb_data_home_dir

The common part of the directory path for all InnoDB data files in the shared tablespace. This setting does not affect the location of per-file tablespaces when innodb_file_per_table is enabled. The default value is the MySQL data directory. If you specify the value as an empty string, in which case you can use absolute file paths in innodb_data_file_path.

innodb_file_per_table

If innodb_file_per_table is disabled (the default), InnoDB creates tables in the shared tablespace. If innodb_file_per_table is enabled, InnoDB creates each new table using its own .ibd file for storing data and indexes, rather than in the shared tablespace.

innodb_flush_log_at_trx_commit

If the value of innodb_flush_log_at_trx_commit is 0, the log buffer is written out to the log file once per second and the flush to disk operation is performed on the log file, but nothing is done at a transaction commit. When the value is 1, the log buffer is written out to the log file at each transaction commit and the flush to disk operation is performed on the log file. When the value is 2, the log buffer is written out to the file at each commit, but the flush to disk operation is not performed on it. However, the flushing on the log file takes place once per second also when the value is 2. Note that the once-per-second flushing is not 100% guaranteed to happen every second, due to process scheduling issues.

The default value of this variable is 1 (prior to MySQL 4.0.13, the default is 0).

A value of 1 is required for ACID compliance. You can achieve better performance by setting the value different from 1, but then you can lose at most one second worth of transactions in a crash. With a value of 0, any mysqld process crash can erase the last second of transactions. With a value of 2, then only an operating system crash or a power outage can erase the last second of transactions. However, InnoDB's crash recovery is not affected and thus crash recovery does work regardless of the value.

For the greatest possible durability and consistency in a replication setup using InnoDB with transactions, use innodb_flush_log_at_trx_commit = 1 and sync_binlog = 1 in your master server my.cnf file.

sync_binlog

If the value of this variable is greater than 0, the MySQL server synchronizes its binary log to disk after every sync_binlog writes to the binary log. There is one write to the binary log per statement if autocommit is enabled, and one write per transaction otherwise. The default value of sync_binlog is 0, which does no synchronizing to disk. A value of 1 is the safest choice, because in the event of a crash you lose at most one statement or transaction from the binary log. However, it is also the slowest choice

innodb_fast_shutdown

The InnoDB shutdown mode. By default, the value is 1, which causes a “fast” shutdown (the normal type of shutdown). If the value is 0, InnoDB does a full purge and an insert buffer merge before a shutdown. These operations can take minutes, or even hours in extreme cases. If the value is 1, InnoDB skips these operations at shutdown. If the value is 2, InnoDB will just flush its logs and then shut down cold, as if MySQL had crashed; no committed transaction will be lost, but crash recovery will be done at the next startup.

innodb_lock_wait_timeout

The timeout in seconds an InnoDB transaction may wait for a lock before being rolled back. The default is 50 seconds. A transaction that tries to access a row that is locked by another InnoDB transaction will hang for at most this many seconds before issuing the following error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

When a lock wait timeout occurs, the current statement is not executed. The current transaction is not rolled back. (To have the entire transaction roll back, start the server with the --innodb_rollback_on_timeout option, available as of MySQL 5.1.15.

innodb_rollback_on_timeout

In MySQL 5.1, InnoDB rolls back only the last statement on a transaction timeout by default. If --innodb_rollback_on_timeout is specified, a transaction timeout causes InnoDB to abort and roll back the entire transaction. This variable was added in MySQL 5.1.15.

innodb_log_buffer_size

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default value is 1MB. Sensible values range from 1MB to 8MB. A large log buffer enables large transactions to run without a need to write the log to disk before the transactions commit. Thus, if you have big transactions, making the log buffer larger saves disk I/O.

innodb_log_file_size

The size in bytes of each log file in a log group. The combined size of log files must be less than 4GB. The default value is 5MB. Sensible values range from 1MB to 1/N-th of the size of the buffer pool, where N is the number of log files in the group. The larger the value, the less checkpoint flush activity is needed in the buffer pool, saving disk I/O. But larger log files also mean that recovery is slower in case of a crash.

innodb_log_files_in_group

The number of log files in the log group. InnoDB writes to the files in a circular fashion. The default (and recommended) value is 2.

innodb_log_group_home_dir

The directory path to the InnoDB log files. If you do not specify any InnoDB log variables, the default is to create two 5MB files names ib_logfile0 and ib_logfile1 in the MySQL data directory.

innodb_open_files

This variable is relevant only if you use multiple tablespaces in InnoDB. It specifies the maximum number of .ibd files that InnoDB can keep open at one time. The minimum value is 10. The default value is 300. This variable is available as of MySQL 4.1.1.

The file descriptors used for .ibd files are for InnoDB only. They are independent of those specified by the --open-files-limit server option, and do not affect the operation of the table cache.

innodb-safe-binlog

If this option is given, then after a crash recovery by InnoDB, mysqld truncates the binary log after the last not-rolled-back transaction in the log. The option also causes InnoDB to print an error if the binary log is smaller or shorter than it should be.

foreign_key_checks

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, they are ignored. Disabling foreign key checking can be useful for reloading InnoDB tables in an order different from that required by their parent/child relationships.

Setting foreign_key_checks to 0 also affects data definition statements: DROP SCHEMA drops a schema even if it contains tables that have foreign keys that are referred to by tables outside the schema, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.

Note: Setting foreign_key_checks to 1 does not trigger a scan of the existing table data. Therefore, rows added to the table while foreign_key_checks = 0 will not be verified for consistency.

innodb_commit_concurrency

The number of threads that can commit at the same time. A value of 0 (the default) permits any number of transactions to commit simultaneously.

As of MySQL 5.1.36, the value of innodb_commit_concurrency cannot be changed at runtime from zero to nonzero or vice versa. The value can still be changed from one nonzero value to another.

innodb_force_recovery

The crash recovery mode. Possible values are from 0 to 6. This variable should be set greater than 0 only in an emergency situation when you want to dump your tables from a corrupt database! As a safety measure, InnoDB prevents any changes to its data when this variable is greater than 0

innodb_stats_on_metadata

When this variable is enabled (which is the default, as before the variable was created), InnoDB updates statistics during metadata statements such as SHOW TABLE STATUS or SHOW INDEX, or when accessing the INFORMATION_SCHEMA tables TABLES or STATISTICS. (These updates are similar to what happens for ANALYZE TABLE.) When disabled, InnoDB does not updates statistics during these operations. Disabling this variable can improve access speed for schemas that have a large number of tables or indexes. It can also improve the stability of execution plans for queries that involve InnoDB tables.

Creating and Using InnoDB Tables:

To create an InnoDB table, specify an ENGINE = InnoDB option in the CREATE TABLE statement:

mysql> CREATE TABLE customers (a INT, b CHAR (20), INDEX (a)) ENGINE=InnoDB;

The statement creates a table and an index on column a in the InnoDB tablespace that consists of the data files that you specified in my.cnf. In addition, MySQL creates a file customers.frm in the test directory under the MySQL database directory. Internally, InnoDB adds an entry for the table to its own data dictionary. The entry includes the database name. For example, if test is the database in which the customers table is created, the entry is for 'test/customers'. This means you can create a table of the same name customers in some other database, and the table names do not collide inside InnoDB.

You can query the amount of free space in the InnoDB tablespace by issuing a SHOW TABLE STATUS statement for any InnoDB table. The amount of free space in the tablespace appears in the Data_free section in the output of SHOW TABLE STATUS (or the Comment section prior to MySQL 5.1.24). For example:

mysql> SHOW TABLE STATUS FROM test LIKE 'customers'

How to Use Transactions in InnoDB with Different APIs:

By default, each client that connects to the MySQL server begins with autocommit mode enabled, which automatically commits every SQL statement as you execute it. To use multiple-statement transactions, you can switch autocommit off with the SQL statement SET autocommit = 0 and end each transaction with either COMMIT or ROLLBACK. If you want to leave autocommit on, you can begin your transactions within START TRANSACTION and end them with COMMIT or ROLLBACK. The following example shows two transactions. The first is committed; the second is rolled back.

shell> mysql test

mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a))

-> ENGINE=InnoDB;

Query OK, 0 rows affected (0.00 sec)

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO customer VALUES (10, 'Heikki');

Query OK, 1 row affected (0.00 sec)

mysql> COMMIT;

Query OK, 0 rows affected (0.00 sec)

mysql> SET autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO customer VALUES (15, 'John');

Query OK, 1 row affected (0.00 sec)

mysql> ROLLBACK;

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM customer;

+------+--------+

| a | b |

+------+--------+

| 10 | Heikki |

+------+--------+

1 row in set (0.00 sec)

mysql>

Converting Tables from Other Storage Engines to InnoDB:

To convert a non-InnoDB table to use InnoDB use ALTER TABLE:

mysql> ALTER TABLE t1 ENGINE=InnoDB;

Note: Do not convert MySQL system tables in the mysql database (such as user or host) to the InnoDB type. This is an unsupported operation. The system tables must always be of the MyISAM type.

InnoDB Multi-Versioning:

InnoDB is a multi-versioned storage engine: it keeps information about old versions of changed rows, to support transactional features such as concurrency and rollback. This information is stored in the tablespace in a data structure called a rollback segment (after an analogous data structure in Oracle). InnoDB uses the information in the rollback segment to perform the undo operations needed in a transaction rollback. It also uses the information to build earlier versions of a row for a consistent read. Internal Details of Multi-Versioning Internally, InnoDB adds three fields to each row stored in the database. A 6-byte DB_TRX_ID field indicates the transaction identifier for the last transaction that inserted or updated the row. Also, a deletion is treated internally as an update where a special bit in the row is set to mark it as deleted. Each row also contains a 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an undo log record written to the rollback segment. If the row was updated, the undo log record contains the information necessary to rebuild the content of the row before it was updated. A 6-byte DB_ROW_ID field contains a row ID that increases monotonically as new rows are inserted. If InnoDB generates a clustered index automatically, the index contains row ID values. Otherwise, the DB_ROW_ID column does not appear in any index.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs are needed only in transaction rollback and can be discarded as soon as the transaction commits. Update undo logs are used also in consistent reads, but they can be discarded only after there is no transaction present for which InnoDB has assigned a snapshot that in a consistent read could need the information in the update undo log to build an earlier version of a database row.

Guidelines for Managing Rollback Segments Commit:

your transactions regularly, including those transactions that issue only consistent reads. Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback segment may grow too big, filling up your tablespace.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database immediately when you delete it with an SQL statement. InnoDB only physically removes the corresponding row and its index records when it discards the update undo log record written for the deletion. This removal operation is called a purge, and it is quite fast, usually taking the same order of time as the SQL statement that did the deletion.

Clustered and Secondary Indexes:

Every InnoDB table has a special index called the clustered index where the data for the rows is stored:

If you define a PRIMARY KEY on your table, InnoDB uses it as the clustered index.

If you do not define a PRIMARY KEY for your table, MySQL picks the first UNIQUE index that has only
NOT NULL columns as the primary key and InnoDB uses it as the clustered index.

If the table has no PRIMARY KEY or suitable UNIQUE index, InnoDB internally generates a hidden clustered index on a synthetic column containing row ID values. The rows are ordered by the ID that InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that increases monotonically as new rows are inserted. Thus, the rows ordered by the row ID are physically in insertion order.

Accessing a row through the clustered index is fast because the row data is on the same page where the index search leads. If a table is large, the clustered index architecture often saves a disk I/O operation when compared to storage organizations that store row data using a different page from the index record. (For example, MyISAM uses one file for data rows and another for index records.)

In InnoDB, the records in nonclustered indexes (also called secondary indexes) contain the primary key columns for the row that are not in the secondary index. InnoDB uses this primary key value to search for the row in the clustered index. If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short primary key.

6.4.6. File Space Management

The data files that you define in the configuration file form the InnoDB tablespace. The files are logically concatenated to form the tablespace. There is no striping in use. Currently, you cannot define where within the tablespace your tables are allocated. However, in a newly created tablespace, InnoDB allocates space starting from the first data file.

The tablespace consists of database pages with a default size of 16KB. The pages are grouped into extents of size 1MB (64 consec-utive pages). The “files” inside a tablespace are called segments in InnoDB. The term “rollback segment” is somewhat confusing because it actually contains many tablespace segments.

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it individually. After that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at a time to a large segment to ensure good sequentiality of data.

Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the other is for the leaf nodes. The idea here is to achieve better sequentiality for the leaf nodes, which contain the data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an InnoDB tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS statement, InnoDB reports the extents that are definitely free in the tablespace. InnoDB always reserves some extents for cleanup and other internal purposes; these reserved extents are not included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether the freed space becomes available for other users depends on whether the pattern of deletes frees individual pages or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed to release the space to other users, but remember that deleted rows are physically removed only in an (automatic) purge operation after they are no longer needed for transaction rollbacks or consistent reads.

The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and TEXT), is slightly less than half of a database page. That is, the maximum row length is about 8000 bytes. LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and TEXT columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page, variable-length columns are chosen for external off-page storage until the row fits within half a page. For a column chosen for off-page storage, InnoDB stores the first 768 bytes locally in the row, and the rest externally into overflow pages. Each such column has its own list of overflow pages. The 768-byte prefix is accompanied by a 20-byte value that stores the true length of the column and points into the overflow list where the rest of the value is stored.

Defragmenting a Table:

If there are random insertions into or deletions from the indexes of a table, the indexes may become fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not close to the index ordering of the records on the pages, or that there are many unused pages in the 64-page blocks that were allocated to the index.

One symptom of fragmentation is that a table takes more space than it “should” take. How much that is exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor may vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes more time than it “should” take:

mysql> SELECT COUNT(*) FROM t WHERE a_non_indexed_column <> 12345;

(In the preceding query, we are “fooling” the SQL optimizer into scanning the clustered index rather than a secondary index.) Most disks can read 10MB/s to 50MB/s, which can be used to estimate how fast a table scan should be.

It can speed up index scans if you periodically perform a “null” ALTER TABLE operation, which causes MySQL to rebuild the table:

mysql> ALTER TABLE tbl_name ENGINE=INNODB;

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text file, drop the table, and reload it from the dump file.

If the insertions into an index are always ascending and records are deleted only from the end, the InnoDB filespace management algorithm guarantees that fragmentation in the index does not occur.

6.4.7 InnoDB Error Handling

Error handling in InnoDB is not always the same as specified in the SQL standard. According to the standard, any error during an SQL statement should cause rollback of that statement. InnoDB sometimes rolls back only part of the statement, or the whole transaction. The following items describe how InnoDB performs error handling:

· If you run out of file space in the tablespace, a MySQL Table is full error occurs and InnoDB rolls back the SQL statement.

· A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the whole transaction when this happens.

· A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in your statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW PROCESSLIST displays Rolling back in the State column for the relevant connection.

InnoDB Error Codes:

1005 (ER_CANT_CREATE_TABLE)

Cannot create table. If the error message refers to error 150, table creation failed because a foreign key constraint was not correctly formed. If the error message refers to error –1, table creation probably failed because the table includes a column name that matched the name of an internal InnoDB table.

1016 (ER_CANT_OPEN_FILE)

Cannot find the InnoDB table from the InnoDB data files, although the .frm file for the table exists.

1114 (ER_RECORD_FILE_FULL)

InnoDB has run out of free space in the tablespace. Reconfigure the tablespace to add a new data file.

1205 (ER_LOCK_WAIT_TIMEOUT)

Lock wait timeout expired. Transaction was rolled back.

1216 (ER_NO_REFERENCED_ROW)

You are trying to add a row but there is no parent row, and a foreign key constraint fails. Add the parent row first.

1217 (ER_ROW_IS_REFERENCED)

You are trying to delete a parent row that has children, and a foreign key constraint fails. Delete the children first.

6.4.8. InnoDB Performance Tuning and Troubleshooting

· innodb_buffer_pool_size specifies the size of the buffer pool. If your buffer pool is small and you have sufficient memory, making the pool larger can improve performance by reducing the amount of disk I/O needed as queries access InnoDB tables.

· Beware of big rollbacks of mass inserts: InnoDB uses the insert buffer to save disk I/O in inserts, but no such mechanism is used in a corresponding rollback. A disk-bound rollback can take 30 times as long to perform as the corresponding insert. Killing the database process does not help because the rollback starts again on server startup. The only way to get rid of a runaway rollback is to increase the buffer pool so that the rollback becomes CPU-bound and runs fast, or to use a special procedure.

· Beware also of other big disk-bound operations. Use DROP TABLE and CREATE TABLE to empty a table, not DELETE FROM tbl_name.

· Place tablespaces in different locations.

· Make your log files big, even as big as the buffer pool. When InnoDB has written the log files full, it must write the modified contents of the buffer pool to disk in a checkpoint. Small log files cause many unnecessary disk writes. The disadvantage of big log files is that the recovery time is longer.

· When importing data into InnoDB, make sure that MySQL does not have autocommit mode enabled because that requires a log flush to disk for every insert. To disable autocommit during your import operation, surround it with SET autocommit and COMMIT statements:

SET autocommit=0;

... SQL import statements ...

COMMIT;

· If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily turning off the uniqueness checks during the import session:

SET unique_checks=0;

... SQL import statements ...

SET unique_checks=1;

· If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning the foreign key checks off for the duration of the import session:

SET foreign_key_checks=0;

... SQL import statements ...

SET foreign_key_checks=1;

· Use the multiple-row INSERT syntax to reduce communication overhead between the client and the server if you need to insert many rows:

mysql> INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

SHOW ENGINE INNODB STATUS and the InnoDB Monitors:

InnoDB Monitors provide information about the InnoDB internal state. This information is useful for performance tuning. Each Monitor can be enabled by creating a table with a special name, which causes InnoDB to write Monitor output periodically. Also, output for the standard InnoDB Monitor is available on demand through the SHOW ENGINE INNODB STATUS SQL statement.

There are several types of InnoDB Monitors:

1. TRANSACTIONS

2. BACKGROUND THREAD

3. BUFFER POOL AND MEMORY

4. ROW OPERATIONS

5. About Log Files

6. FILE I/O

TRANSACTIONS

If this section reports lock waits, your applications might have lock contention. The output can also help to trace the reasons for transaction deadlocks.

BACKGROUND THREAD

The srv_master_thread lines shows work done by the main background thread. This section is displayed only by InnoDB Plugin.

BUFFER POOL AND MEMORY

This section gives you statistics on pages read and written. You can calculate from these numbers how many data file I/O operations your queries currently are doing.

ROW OPERATIONS

This section shows what the main thread is doing, including the number and performance rate for each type of row operation.

About LOG Files

This section displays information about the InnoDB log. The contents include the current log sequence number, how far the log has been flushed to disk, and the position at which InnoDB last took a checkpoint.

FILE I/O

This section provides information about threads that InnoDB uses to perform various types of I/O. The first few of these are dedicated to general InnoDB processing. The contents also display information for pending I/O operations and statistics for I/O performance.

6.4.9 Restrictions on InnoDB Tables:

Do not convert MySQL system tables in the mysql database from MyISAM to InnoDB tables! This is an unsupported operation. If you do this, MySQL does not restart until you restore the old system tables from a backup or regenerate them with the mysql_install_db script.

Maximums and Minimums:

· A table cannot contain more than 1000 columns.

· The InnoDB internal maximum key length is 3500 bytes, but MySQL itself restricts this to 3072 bytes.

· The combined size of the InnoDB log files must be less than 4GB.

· The minimum tablespace size is 10MB. The maximum tablespace size is 64TB. This is also the maximum size for a table.

6.5. The MERGE Storage Engine

The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM tables that can be used as one. “Identical” means that all tables have identical column and index information. You cannot merge MyISAM tables in which the columns are listed in a different order, do not have exactly the same columns, or have the indexes in different order.

An alternative to a MERGE table is a partitioned table, which stores partitions of a single table in separate files. Partitioning enables some operations to be performed more efficiently and is not limited to the MyISAM storage engine.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with the table name and have an extension to indicate the file type. An .frm file stores the table format, and an .MRG file contains the names of the underlying MyISAM tables that should be used as one. The tables do not have to be in the same database as the MERGE table.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT, DELETE, and UPDATE privileges on the MyISAM tables that you map to a MERGE table.

 Note: The use of MERGE tables entails the following security issue: If a user has access to MyISAM table t, that user can create a MERGE table m that accesses t. However, if the user's privileges on t are subsequently revoked, the user can continue to access t by doing so through m.

Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are not affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts into the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first or last underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a value of NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (

-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

-> message CHAR(20)) ENGINE=MyISAM;

mysql> CREATE TABLE t2 (

-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

-> message CHAR(20)) ENGINE=MyISAM;

mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');

mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');

mysql> CREATE TABLE total (

-> a INT NOT NULL AUTO_INCREMENT,

-> message CHAR(20), INDEX(a))

-> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Note that column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table. There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over the set of underlying tables. (Similarly, a column with a UNIQUE index in the underlying tables should be indexed in the MERGE table but not as a UNIQUE index.)

After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a whole:

mysql> SELECT * FROM total;

+---+---------+

| a | message |

+---+---------+

| 1 | Testing |

| 2 | table |

| 3 | t1 |

| 1 | Testing |

| 2 | table |

| 3 | t2 |

+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following methods:

· DROP the MERGE table and re-create it.

· Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

Beginning with MySQL 5.1.24, it is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause) to remove all of the underlying tables.

MERGE TABLE Limitations:

· The underlying table and the MERGE table must have the same number of columns.

If you ALTER the MERGE table and add a column and after that if your trying to fetch the table you will get the below error.

Unable to open underlying table which is differently defined or of non-MyISAM type or doesn't exist

· The column order in the underlying table and the MERGE table must match.

· The column type in the underlying table and the MERGE table must be equal.

· The column length in the underlying table and the MERGE table must be equal.

Unable to open underlying table which is differently defined or of non-MyISAM type or doesn't exist

· The underlying table may have more indexes than the MERGE table, but cannot have fewer.

· The index type of the underlying table and the MERGE table must be the same.

· The number of index parts (that is, multiple columns within a compound index) in the index definition for the underlying table and the MERGE table must be the same.

MERGE Table Advantages and Disadvantages:

MERGE tables can help you solve the following problems:

· Obtain more speed. You can split a large read-only table based on some criteria, and then put individual tables on different disks. A MERGE table structured this way could be much faster than using a single large table.

· Perform more efficient searches. If you know exactly what you are looking for, you can search in just one of the underlying tables for some queries and use a MERGE table for others. You can even have many different MERGE tables that use overlapping sets of tables.

· Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a MERGE table than to repair a single large table.

· Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a collection of MyISAM tables is not.

· You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that single table. There should be no really notable performance impact from doing this

The disadvantages of MERGE tables are:

· You can use only identical MyISAM tables for a MERGE table.

· Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but you cannot search the MERGE table with a full-text search.)

· Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read on all underlying tables to check which one most closely matches a given index value. To read the next index value, the MERGE storage engine needs to search the read buffers to find the next value. Only when one index buffer is used up does the storage engine need to read the next index block.

6.6. MERGE Table Problems:

· If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the altered table, which then uses the specified storage engine.

· The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use for inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM table has no effect for inserts into the MERGE table until at least one row has been inserted directly into the MyISAM table.

· A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over all the underlying tables in the collection.

The MEMORY Storage Engine:

The MEMORY storage engine creates tables with contents that are stored in memory. Formerly, these were known as HEAP tables. MEMORY is the preferred term, although HEAP remains supported for backward compatibility.

However, MEMORY performance is constrained by contention resulting from single-thread execution and table lock overhead when processing updates. This limits scalability when load increases, particularly for statement mixes that include writes. Also, MEMORY does not preserve table contents across server restarts.

To specify that you want to create a MEMORY table, indicate that with an ENGINE table option:

mysql> CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by default, which makes them very fast, and very useful for creating temporary tables. However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables themselves continue to exist because their definitions are stored in .frm files on disk, but they are empty when the server restarts.

MEMORY tables have the following characteristics:

· Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts. No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows are put in a linked list and are reused when you insert new data into the table. MEMORY tables also have none of the problems commonly associated with deletes plus inserts in hashed tables.

· MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length of 3072 bytes.

· MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are stored using a fixed length.

· MEMORY tables cannot contain BLOB or TEXT columns.

· Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY table.

· MEMORY table contents are stored in memory, which is a property that MEMORY tables share with internal temporary tables that the server creates on the fly while processing queries. However, the two types of tables differ in that MEMORY tables are not subject to storage conversion.

· MEMORY tables are never converted to disk tables. If an internal temporary table becomes too large, the server automatically converts it to on-disk storage.

· The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which has a default value of 16MB. To have larger (or smaller) MEMORY tables, you must change the value of this variable. The value in effect for CREATE TABLE is the value used for the life of the table. (If you use ALTER TABLE or TRUNCATE TABLE, the value in effect at that time becomes the new maximum size for the table. A server restart also sets the maximum size of existing MEMORY tables to the global max_heap_table_size value.)

· The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

· Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only when the entire table is deleted. Memory that was previously used for rows that have been deleted will be re-used for new rows only within the same table. To free up the memory used by rows that have been deleted, use ALTER TABLE ENGINE=MEMORY to force a table rebuild.

· As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum size of MEMORY tables. To control the maximum size for individual tables, set the session value of this variable before creating each table. (Do not change the global max_heap_table_size value unless you intend the value to be used for MEMORY tables created by all clients.) The following

 example creates two MEMORY tables, with a maximum size of 1MB and 2MB, respectively:

mysql> SET max_heap_table_size = 1024*1024;

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;

Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;

Query OK, 0 rows affected (0.00 sec)

 Both tables will revert to the server's global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to provide a hint about the number of rows you plan to store in them. This does not enable the table to grow beyond the max_heap_table_size value, which still acts as a constraint on maximum table size. For maximum flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as high as the value to which you want each MEMORY table to be able to grow.

6.7. The EXAMPLE Storage Engine

The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example in the MySQL source code that illustrates how to begin writing new storage engines. As such, it is primarily of interest to developers.

To enable the EXAMPLE storage engine if you build MySQL from source, invoke configure with the -

-with-example-storage-engine option.

To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL source distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory. The file begins with the table name and has an .frm extension. No other files are created. No data can be stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;

Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);

ERROR 1031 (HY000): Table storage engine for 'test' doesn't »

have this option

mysql> SELECT * FROM test;

Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

6.8. The FEDERATED Storage Engine

The FEDERATED storage engine enables data to be accessed from a remote MySQL database on a local server without using replication or cluster technology. When using a FEDERATED table, queries on the local server are automatically executed on the remote (federated) tables. No data is stored on the local tables.

To include the FEDERATED storage engine if you build MySQL from source, invoke configure with the -

-with-federated-storage-engine option.

Beginning with MySQL 5.1.26, the FEDERATED storage engine is not enabled by default in the running server; to enable FEDERATED, you must start the MySQL server binary using the --federated option.

To examine the source for the FEDERATED engine, look in the storage/federated directory of a MySQL source distribution.

6.8.1 FEDERATED Storage Engine Overview:

When you create a table using one of the standard storage engines (such as MyISAM, CSV or InnoDB), the table consists of the table definition and the associated data. When you create a FEDERATED table, the table definition is the same, but the physical storage of the data is handled on a remote server.

A FEDERATED table consists of two elements:

· A remote server with a database table, which in turn consists of the table definition (stored in the .frm file) and the associated table. The table type of the remote table may be any type supported by the remote mysqld server, including MyISAM or InnoDB.

· A local server with a database table, where the table definition matches that of the corresponding table on the remote server. The table definition is stored within the .frm file. However, there is no data file on the local server. Instead, the table definition includes a connection string that points to the remote table.

When executing queries and statements on a FEDERATED table on the local server, the operations that would normally insert, update or delete information from a local data file are instead sent to the remote server for execution, where they update the data file on the remote server or return matching rows from the remote server.

The basic structure of a FEDERATED table setup is shown below:

1. The storage engine looks through each column that the FEDERATED table has and constructs an appropriate SQL statement that refers to the remote table.

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the local server retrieves any result that the statement produces (an affectedrows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format that the FEDERATED engine expects and can use to display the result to the client that issued the original statement. The local server communicates with the remote server using MySQL client C API functions.

6.8.2 How to Create FEDERATED Tables:

To create a FEDERATED table you should follow these steps:

· Create the table on the remote server. Alternatively, make a note of the table definition of an existing table, perhaps using the SHOW CREATE TABLE statement.

· Create the table on the local server with an identical table definition, but adding the connection information that links the local table to the remote table.

For example, you could create the following table on the remote server:

CREATE TABLE test_table (

id INT(20) NOT NULL AUTO_INCREMENT,

name VARCHAR(32) NOT NULL DEFAULT '',

other INT(20) NOT NULL DEFAULT '0',

PRIMARY KEY (id),

INDEX name (name)

)

ENGINE=MyISAM;

To create the local table that will be federated to the remote table, there are two options available. You can either create the local table and specify the connection string (containing the server name, login, password) to be used to connect to the remote table using the CONNECTION, or you can use an existing connection that you have previously created using the CREATE SERVER statement.

To use the first method, you must specify the CONNECTION string after the engine type in a CREATE TABLE statement. For example:

CREATE TABLE federated_table (

id INT(20) NOT NULL AUTO_INCREMENT,

name VARCHAR(32) NOT NULL DEFAULT '',

other INT(20) NOT NULL DEFAULT '0',

PRIMARY KEY (id),

INDEX name (name)

)

ENGINE=FEDERATED

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

The CONNECTION string contains the information required to connect to the remote server containing the table that will be used to physically store the data. The connection string specifies the server name, login credentials, port number and database/table information. In the example, the remote table is on the server remote_host, using port 9306. The name and port number should match the host name (or IP address) and port number of the remote MySQL server instance you want to use as your remote table.

The format of the connection string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Where:

· scheme: A recognized connection protocol. Only mysql is supported as the scheme value at this point.

· user_name: The user name for the connection. This user must have been created on the remote server, and must have suitable privileges to perform the required actions (SELECT, INSERT, UPDATE, and so forth) on the remote table.

· password: (Optional) The corresponding password for user_name.

· host_name: The host name or IP address of the remote server.

· port_num: (Optional) The port number for the remote server. The default is 3306.

· db_name: The name of the database holding the remote table.

· tbl_name: The name of the remote table. The name of the local and the remote table do not have to match.

Creating a FEDERATED Table Using CREATE SERVER:

If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the process of creating FEDERATED tables, you can use the CREATE SERVER statement to define the server connection parameters, just as you would with the CONNECTION string.

The format of the CREATE SERVER statement is:

CREATE SERVER

server_name

FOREIGN DATA WRAPPER wrapper_name

OPTIONS (option [, option] ...)

The server_name is used in the connection string when creating a new FEDERATED table.

For example, to create a server connection identical to the CONNECTION string:

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

You would use the following statement:

CREATE SERVER fedlink

FOREIGN DATA WRAPPER mysql

OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');

To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but specify the name you used in the CREATE SERVER statement.

CREATE TABLE test_table (

id INT(20) NOT NULL AUTO_INCREMENT,

name VARCHAR(32) NOT NULL DEFAULT '',

other INT(20) NOT NULL DEFAULT '0',

PRIMARY KEY (id),

INDEX name (name)

)

ENGINE=FEDERATED

CONNECTION='fedlink/test_table';

The connection name in this example contains the name of the connection (fedlink) and the name of the table (test_table) to link to, separated by a slash. If you specify only the connection name without a table name, the table name of the local table is used instead.

6.8.3 FEDERATED Storage Engine Notes and Tips

You should be aware of the following points when using the FEDERATED storage engine:

· The remote table that a FEDERATED table points to must exist before you try to access the table through the FEDERATED table.

· It is possible for one FEDERATED table to point to another, but you must be careful not to create a loop.

· The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE TABLE, and indexes. It does not support ALTER TABLE, or any Data Definition Language statements that directly affect the structure of the table, other than DROP TABLE.

· Transactions are not supported.

· There is no way for the FEDERATED engine to know if the remote table has changed.

· Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the remote table.

6.9 The ARCHIVE Storage Engine

The ARCHIVE storage engine is used for storing large amounts of data without indexes in a very small footprint.

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine if you build MySQL from source, invoke configure with the --with-archive-storage-engine option.

To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL source distribution.

When you create an ARCHIVE table, the server creates a table format file in the database directory. The file begins with the table name and has an .frm extension. The data file has an extension of .ARZ. (Prior to MySQL 5.1.15, a metadata file with an extension of .ARM is created as well.) An .ARN file may appear during optimization operations.

The ARCHIVE engine supports INSERT and SELECT, but not DELETE, REPLACE, or UPDATE. It does support ORDER BY operations. The ARCHIVE engine uses row-level locking.

As of MySQL 5.1.6, the ARCHIVE engine supports the AUTO_INCREMENT column attribute. Attempting to create an index on any other column results in an error.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data compression (see http:// www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack it into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). The engine also supports CHECK TABLE. There are several types of insertions that are used:

· An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as necessary. The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur, unless the only insertions that have come in were INSERT DELAYED (those flush as necessary)

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT operation performs a complete table scan: When a SELECT occurs, it finds out how many rows are currently available and reads that number of rows. SELECT is performed as a consistent read. Note that lots of SELECT statements during insertion can deteriorate the compression, unless only bulk or delayed inserts are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR TABLE. The number of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate.

6.10 The CSV Storage Engine

The CSV storage engine stores data in text files using comma-separated values format. To enable the CSV storage engine if you build MySQL from source, invoke configure with the --with-csv-storage-engine option. To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file begins with the table name and has an .frm extension. The storage engine also creates a data file. Its name begins with the table name and has a .CSV extension. The data file is a plain text file. When you store data into the table, the storage engine saves it into the data file in commaseparated values format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)

-> ENGINE = CSV;

Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');

Query OK, 2 rows affected (0.00 sec)

Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;

+------+------------+

| i | c |

+------+------------+

| 1 | record one |

| 2 | record two |

+------+------------+

2 rows in set (0.00 sec)

Starting with MySQL 5.1.9, creating a CSV table also creates a corresponding Metafile that stores the state of the table and the number of rows that exist in the table. The name of this file is the same as the name of the table with the extension CSM.

If you examine the test.CSV file in the database directory created by executing the preceding statements, its contents should look like this:

"1","record one"

"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel or StarOffice Calc.

You can directly edit the .CSV file to manipulate data, but the changes are visible only after executing the FLUSH TABLES command. But this is not the prefered way.

6.10.1. Repairing and Checking CSV Tables:

Functionality introduced in version 5.1.9

The CSV storage engines supports the CHECK and REPAIR statements to verify and if possible repair a damaged CSV table. When running the CHECK statement, the CSV file will be checked for validity by looking for the correct field separators, escaped fields (matching or missing quotation marks), the correct number of fields compared to the table definition and the existence of a corresponding CSV metafile. The first invalid row discovered will report an error. Checking a valid table produces output like that shown below:

mysql> check table csvtest;

+--------------+-------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+--------------+-------+----------+----------+

| test.csvtest | check | status | OK |

+--------------+-------+----------+----------+

1 row in set (0.00 sec)

A check on a corrupted table returns a fault:

mysql> check table csvtest;

+--------------+-------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+--------------+-------+----------+----------+

| test.csvtest | check | error | Corrupt |

+--------------+-------+----------+----------+

1 row in set (0.01 sec)

To repair a table you can use REPAIR, this copies as many valid rows from the existing CSV data as possible, and then replaces the existing CSV file with the recovered rows. Any rows beyond the corrupted data are lost.

mysql> repair table csvtest;

+--------------+--------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+--------------+--------+----------+----------+

| test.csvtest | repair | status | OK |

+--------------+--------+----------+----------+

1 row in set (0.02 sec)

Note: Note that during repair, only the rows from the CSV file up to the first damaged row are copied to the new table. All other rows from the first damaged row to the end of the table are removed, even valid rows.

6.10.2. CSV Limitations:

The CSV storage engine does not support indexing.

Partitioning is not supported for tables using the CSV storage engine.

Beginning with MySQL 5.1.23, tables using the CSV storage engine can no longer be created with NULL columns. However, for backward compatibility, you can continue to use such tables that were created in previous MySQL releases.

6.11 The BLACKHOLE Storage Engine

The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does not store it. Retrievals always return an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;

Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');

Query OK, 2 rows affected (0.00 sec)

Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;

Empty set (0.00 sec)

To enable the BLACKHOLE storage engine if you build MySQL from source, invoke configure with the -

-with-blackhole-storage-engine option. To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source distribution.

When you create a BLACKHOLE table, the server creates a table format file in the database directory. The file begins with the table name and has an .frm extension. There are no other files associated with the table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index declarations in the table definition.

Inserts into a BLACKHOLE table do not store any data, but if the binary log is enabled, the SQL statements are logged (and replicated to slave servers). This can be useful as a repeater or filter mechanism. Suppose that your application requires slave-side filtering rules, but transferring all binary log data to the slave first results in too much traffic. In such a case, it is possible to set up on the master host a “dummy” slave process whose default storage engine is BLACKHOLE, depicted as follows:

The dummy process does not actually store any data, so there is little processing overhead incurred by running the additional mysqld process on the replication master host. This type of setup can be repeated with additional replication slaves.

As of MySQL 5.1.4, the BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to the binary log and rolled-back transactions are not.

Blackhole Engine and Auto Increment Columns

The Blackhole engine is a no-op engine. Any operations performed on a table using Blackhole will have no effect. This should be born in mind when considering the behavior of primary key columns that auto increment. The engine will not automatically increment field values, and does not retain auto increment field state. This has important implications in replication.

Consider the following replication scenario where all three of the following conditions apply:

1. On a master server there is a blackhole table with an auto increment field that is a primary key.

2. On a slave the same table exists but using the MyISAM engine.

3. Inserts are performed into the master's table without explicitly setting the auto increment value in the INSERT statement itself or through using a SET INSERT_ID statement.

In this scenario replication will fail with a duplicate entry error on the primary key column.

In statement based replication, the value of INSERT_ID in the context event will always be the same. Replication will therefore fail due to trying insert a row with a duplicate value for a primary key column.

In row based replication, the value that the engine returns for the row always be the same for each insert. This will result in the slave attempting to replay two insert log entries using the same value for the primary key column, and so replication will fail.

7. MySQL Client Programs

7.1 mysql ― The MySQL Command-Line Tool

mysql is a simple SQL shell (with GNU readline capabilities). It supports interactive and noninteractive use. When used interactively, query results are presented in an ASCII-table format. When used noninteractively (for example, as a filter), the result is presented in tab-separated format. The output format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option. This forces mysql to retrieve results from the server a row at a time rather than retrieving the entire result set and buffering it in memory before displaying it.

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shell> mysql db_name

Or:

shell> mysql --user=user_name --password=your_password db_name

mysql Options:

mysql supports the following options, which can be specified on the command line or in the [mysql] and [client] option file groups.

--compress, -C

Compress all information sent between the client and the server if both support compression.

--database=db_name, -D db_name

The database to use. This is useful primarily in an option file.

--delimiter=str

Set the statement delimiter. The default is the semicolon character (“;”).

--execute=statement, -e statement

Execute the statement and quit.

--force, -f

Continue even if an SQL error occurs.

--host=host_name, -h host_name

Connect to the MySQL server on the given host.

--html, -H

Produce HTML output.

--password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysql prompts for one.

--port=port_num, -P port_num

The TCP/IP port number to use for the connection.

--quick, -q

Do not cache each query result, print each row as it is received. This may slow down the server if the output is suspended. With this option, mysql does not use the history file.

--skip-column-names, -N

Do not write column names in results.

--socket=path, -S path

For connections to localhost, the Unix socket file to use.

--tee=file_name

Append a copy of output to the given file. This option works only in interactive mode.

--user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

--xml, -X

Produce XML output.

--connect_timeout

The number of seconds before connection timeout.

7.2 mysqladmin ― Client for Administering a MySQL Server

mysqladmin is a client for performing administrative operations. You can use it to check the server's configuration and current status, to create and drop databases, and more.

create db_name

Create a new database named db_name.

drop db_name

Delete the database named db_name and all its tables.

flush-logs

Flush all logs.

flush-privileges (reload)

Reload the grant tables (same as reload).

flush-status

Clear status variables.

flush-tables

Flush all tables.

kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

ping

Check whether the server is available. The return status from mysqladmin is 0 if the server is running, 1 if it is not. This is 0 even in case of an error such as Access denied, because this means that the server is running but refused the connection, which is different from the server not running.

processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement. If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST.

status

Display a short server status message.

Uptime

The number of seconds the MySQL server has been running.

Threads

The number of active threads (clients).

Questions

The number of questions (queries) from clients since the server was started.

Slow queries

The number of queries that have taken more than long_query_time seconds.

Opens

The number of tables the server has opened.

Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

Open tables

The number of tables that currently are open.

Queries per second avg

Average Queries executed in the server per second.

variables

Display the server system variables and their values.

version

Display version information from the server.

7.3 mysqlcheck ― A Table Maintenance Program

The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables. Each table is locked and therefore unavailable to other sessions while it is being processed, although for check operations, the table is locked with a READ lock only. Table maintenance operations can be time-consuming, particularly for large tables. If you use the --databases or --all-databases option to process all tables in one or more databases, an invocation of mysqlcheck might take a long time.

mysqlcheck is similar in function to myisamchk, but works differently. The main operational difference is that mysqlcheck must be used when the mysqld server is running, whereas myisamchk should be used when it is not. The benefit of using mysqlcheck is that you do not have to stop the server to perform table maintenance.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the operation you want to perform, and then sends the statements to the server to be executed. For details about which storage engines each statement works with, see the descriptions for those statements

The MyISAM storage engine supports all four maintenance operations, so mysqlcheck can be used to perform any of them on MyISAM tables. Other storage engines do not necessarily support all operations. In such cases, an error message is displayed. For example, if test.t is a MEMORY table, an attempt to check it produces this result:

shell> mysqlcheck test t

test.t

note : The storage engine for the table doesn't support check

Note : It is best to make a backup of a table before performing a table repair operation; under some circumstances the operation might cause data loss. Possible causes include but are not limited to file system errors.

There are three general ways to invoke mysqlcheck:

shell> mysqlcheck [options] db_name [tbl_name ...]

shell> mysqlcheck [options] --databases db_name ...

shell> mysqlcheck [options] –all-databases

If you do not name any tables following db_name or if you use the --databases or --all-databases option, entire databases are checked.

Options:

--all-databases, -A

Check all tables in all databases. This is the same as using the --databases option and naming all the databases on the command line.

--analyze, -a

Analyze the tables and stores the key distribution for a table.

--auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables have been checked.

--check, -c

Check the tables for errors. This is the default operation.

--check-only-changed, -C

Check only tables that have changed since the last check or that have not been closed properly.

--databases, -B

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument on the command line as a database name and following names as table names. With this option, it treats all name arguments as database names.

--extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long time.

--fast, -F

Check only tables that have not been closed properly.

--force, -f

Continue even if an SQL error occurs.

--host=host_name, -h host_name

Connect to the MySQL server on the given host.

--medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which should be good enough in most cases.

--optimize, -o

Optimize the tables.

--password[=password], -p[password]

The password to use when connecting to the server.

--port=port_num, -P port_num

The TCP/IP port number to use for the connection.

--quick, -q

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest repair method.

--repair, -r

Perform a repair that can fix almost anything except unique keys that are not unique.

--socket=path, -S path

For connections to localhost, the Unix socket file to use

--tables

Override the --databases or -B option. All name arguments following the option are regarded as table names.

--user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

7.4 mysqldump ― A Database Backup Program

Refer 11. Backup and Recovery

7.5 mysqlimport ― A Data Import Program

Refer 11.3.3 Dumping Data in Delimited-Text Format

7.6 mysqlshow ― Display Database, Table, and Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's columns or indexes. mysqlshow provides a command-line interface to several SQL SHOW statements. The same information can be obtained by using those statements directly. For example, you can issue them from the mysql client program.

Invoke mysqlshow like this:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

· If no database is given, a list of database names is shown

· If no table is given, all matching tables in the database are shown.

· If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some privileges.

If the last argument contains shell or SQL wildcard characters (“*”, “?”, “%”, or “_”), only those names that are matched by the wildcard are shown. If a database name contains any underscores, those should be escaped with a backslash to get a list of the proper tables or columns. “*” and “?” characters are converted into SQL “%” and “_” wildcard characters. This might cause some confusion when you try to display the columns for a table with a “_” in the name, because in this case, mysqlshow shows you only the table names that match the pattern. This is easily fixed by adding an extra “%” last on the command line as a separate argument.

Options:

--count

Show the number of rows per table. This can be slow for non-MyISAM tables.

--host=host_name

--password[=password]

--port=port_num

--socket=path

--keys

Show table indexes

--status

Display extra information about each table (SHOW TABLE STATUS)

7.7 mysqlslap ― Load Emulation Client

At the end of the Course.

8. MySQL Administrative and Utility Programs

8.1 myisamchk ― MyISAM Table-Maintenance Utility

The myisamchk utility gets information about your database tables or checks, repairs, or optimizes them. myisamchk works with MyISAM tables. You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.

Note: It is best to make a backup of a table before performing a table repair operation; under some circumstances the operation might cause data loss.

Invoke myisamchk like this:

shell> myisamchk [options] tbl_name ...

With no options, myisamchk simply checks your table as the default operation. tbl_name is the database table you want to check or repair. If you run myisamchk somewhere other than in the database directory,

you must specify the path to the database directory, because myisamchk has no idea where the database is located. In fact, myisamchk does not actually care whether the files you are working on are located in a database directory. You can copy the files that correspond to a database table into some other location and perform recovery operations on them there.

You can name several tables on the myisamchk command line if you wish. You can also specify a table by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a directory by using the pattern *.MYI. For example, if you are in a database directory, you can check all the MyISAM tables in that directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL data directory:

shell> myisamchk /path/to/datadir/*/*.MYI

Note: You must ensure that no other program is using the tables while you are running myisamchk. The most effective means of doing so is to shut down the MySQL server while running myisamchk, or to lock all tables that myisamchk is being used on.

Otherwise, when you run myisamchk, it may display the following error message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by another program (such as the mysqld server) that hasn't yet closed the file or that has died without closing the file properly, which can sometimes lead to the corruption of one or more MyISAM tables.

Options:

--check, -c

Check the table for errors. This is the default operation if you specify no option that selects an operation type explicitly.

--fast, -F

Check only tables that haven't been closed properly.

--analyze, -a

Analyze the distribution of key values. This improves join performance by enabling the join optimizer to better choose the order in which to join the tables and which indexes it should use. To obtain information about the key distribution.

--backup, -B

Make a backup of the .MYD file as file_name-time.BAK

--extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of garbage rows. Do not use this option unless you are desperate.

--recover, -r

Do a repair that can fix almost any problem except unique keys that are not unique. If you want to recover a table, this is the option to try first. You should try --safe-recover only if myisamchk reports that the table cannot be recovered using --recover.

--safe-recover, -o

Do a repair using an old recovery method that reads through all rows in order and updates all index trees based on the rows found. This is an order of magnitude slower than --recover, but can handle a couple of very unlikely cases that --recover cannot.

--unpack, -u

Unpack a table that was packed with myisampack.

--set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if there are existing records with AUTO_INCREMENT values this large). If value is not specified, AUTO_INCREMENT numbers for new records begin with the largest value currently in the table, plus one.

8.2. myisampack — Generate Compressed, Read-Only MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each column in the table separately. Usually, myisampack packs the data file 40% to 70%.

When the table is used later, the server reads into memory the information needed to decompress columns. This results in much better performance when accessing individual rows, because you only have to uncompress exactly one row.

· If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke myisampack if the table might be updated by the server during the packing process. It is safest to compress tables with the server stopped

· After packing a table, it becomes read only.

Invoke myisampack like this:

shell> myisampack [options] file_name ...

After you compress a table with myisampack, you should use myisamchk -rq to rebuild its indexes.

Options:

--backup, -b

Make a backup of each table's data file using the name tbl_name.OLD.

--tmpdir=path, -T path

Use the named directory as the location where myisampack creates temporary files.

Compressed Table Characteristics:

Compressed storage format is a read-only format that is generated with the myisampack tool. Compressed tables can be uncompressed with myisamchk.

· Compressed tables take very little disk space. This minimizes disk usage, which is helpful when using slow disks (such as CDROMs).

· Each row is compressed separately, so there is very little access overhead. The header for a row takes up one to three bytes depending on the biggest row in the table. Each column is compressed differently.

· Numbers with a value of zero are stored using one bit.

· If values in an integer column have a small range, the column is stored using the smallest possible type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte) if all its values are in the range from -128 to 127.

· If a column has only a small set of possible values, the data type is converted to ENUM.

mysql_convert_table_format — Convert Tables to Use a Given Storage Engine

mysql_convert_table_format converts the tables in a database to use a particular storage engine (MyISAM by default). mysql_convert_table_format is written in Perl and requires that the DBI and DBD::mysql Perl modules be installed (see Section 2.22, “Perl Installation Notes”).

Invoke mysql_convert_table_format like this:

shell> mysql_convert_table_format [options]db_name

Options:

--host=host_name

Connect to the MySQL server on the given host.

--password=password

The password to use when connecting to the server. Note that the password value is not optional for this option, unlike for other MySQL programs.

--port=port_num

The TCP/IP port number to use for the connection.

--socket=path

For connections to localhost, the Unix socket file to use.

--type=engine_name

Specify the storage engine that the tables should be converted to use. The default is MyISAM if this option is not given.

--user=user_name

The MySQL user name to use when connecting to the server.

mysql_config — Get Compile Options for Compiling Clients

mysql_config provides you with useful information for compiling your MySQL client and connecting it to MySQL. About port, socket, include files, libraries, version etc.

9. MySQL Server Administration

9.1 Server System Variables

[client]

[mysqld]

[mysqldump]

[myisamchk]

[mysqlhotcopy]

auto_increment_increment

Controls the interval between successive column values.

auto_increment_offset

determines the starting point for the AUTO_INCREMENT column value.

Autocommit

log-error

skip-networking

init_connect

A string to be executed by the server for each client that connects. The string consists of one or more SQL statements, separated by semicolon characters. For example, each client session begins by default with autocommit mode enabled.

init_file

The name of the file specified with the --init-file option when you start the server. This should be a file containing SQL statements that you want the server to execute when it starts. Each statement must be on a single line and should not include comments. No statement terminator such as ;, \g, or \G should be given at the end of each statement.

join_buffer_size

The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use indexes and thus perform full table scans. Increase the value of join_buffer_size to get a faster full join when adding indexes is not possible. The maximum permissible setting for join_buffer_size is 4GB.

max_allowed_packet

The maximum size of one packet or any generated/intermediate string.You must increase this value if you are using large BLOB columns or long strings.

max_connect_errors

If there are more than this number of interrupted connections from a host, that host is blocked from further connections. You can unblock blocked hosts with the FLUSH HOSTS statement. If a connection is established successfully within fewer than max_connect_errors attempts after a previous connection was interrupted, the error count for the host is cleared to zero.

max_connections

The maximum permitted number of simultaneous client connections. By default, this is 151, beginning with MySQL 5.1.15.

--skip-external-locking

Do not use external locking (system locking). This affects only MyISAM table access.

wait_timeout(default 28800)

The number of seconds the server waits for activity on a noninteractive connection before closing it. This timeout applies only to TCP/IP and Unix socket file connections, not to connections made using named pipes, or shared memory.

9.2 Server Status Variables

The server maintains many status variables that provide information about its operation. You can view these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS statement The optional GLOBAL keyword aggregates the values over all connections, and SESSIONshows the values for the current connection.

Aborted_clients

The number of connections that were aborted because the client died without closing the connection properly.

Aborted_connects

The number of failed attempts to connect to the MySQL server.

Bytes_received

Bytes_sent

Uptime

Com_commit

Com_delete

Com_insert

Com_select

Com_update

Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

Queries

The number of statements executed by the server. This variable includes statements executed within stored programs.

Questions

The number of statements executed by the server. As of MySQL 5.0.72, this includes only statements sent to the server by clients and no longer includes statements executed within stored programs.

Select_scan

The number of joins that did a full scan.

Table_locks_immediate

The number of times that a request for a table lock could be granted immediately.

Table_locks_waited

The number of times that a request for a table lock could not be granted immediately and a wait was needed. If this is high and you have performance problems, you should first optimize your queries, and then either split your table or tables or use replication.

Threads_connected

The number of currently open connections.

Threads_created

The number of threads created to handle connections. If Threads_created is big, you may want to increase thethread_cache_size value. The cache miss rate can be calculated as Threads_created/Connections.

9.3 Server SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for different clients. Modes define what SQL syntax MySQL should support and what kind of data validation checks it should perform. This makes it easier to use MySQL in different environments and to use MySQL together with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="modes" option, or by using sql-mode="modes" in my.cnf. The default value is empty.

You can change the SQL mode at runtime by using a SET [GLOBAL|SESSION] sql_mode='modes' statement to set the sql_mode system value. Setting the SESSION variable affects only the current client. Any client can change its own session sql_mode value at any time.

You can retrieve the current global or session sql_mode value with the following statements:

SELECT @@GLOBAL.sql_mode;

SELECT @@SESSION.sql_mode;

The most important sql_mode values are probably these:

ALLOW_INVALID_DATES

Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the day is in the range from 1 to 31.

With strict mode disabled, invalid dates such as '2004-04-31' are converted to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an error.

ANSI_QUOTES

Treat “"” as an identifier quote character (like the “`” quote character) and not as a string quote character. You can still use “`” to quote identifiers with this mode enabled. With ANSI_QUOTES enabled, you cannot use double quotation marks to quote literal strings, because it is interpreted as an identifier.

IGNORE_SPACE

Permit spaces between a function name and the “(” character.

NO_AUTO_CREATE_USER

Prevent the GRANT statement from automatically creating new users unless nonempty password is specified.

NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option is useful on slave replication servers.

NO_ENGINE_SUBSTITUTION

Control automatic substitution of the default storage engine when a statement such as CREATE TABLE or ALTER TABLE specifies a storage engine that is disabled or not compiled in.

NO_ZERO_IN_DATE

In strict mode, do not accept dates where the year part is nonzero but the month or day part is 0 (for example, '0000-00-00' is legal but '2010-00-01' and '2010-01-00' are not). If used with the IGNORE option, MySQL inserts a '0000-00-00' date for any such date. When not in strict mode, the date is accepted but a warning is generated.

PIPES_AS_CONCAT

Treat || as a string concatenation operator.

REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT.

STRICT_TRANS_TABLES & STRICT_ALL_TABLES

Strict mode controls how MySQL handles input values that are invalid or missing. A value can be invalid for several reasons. For example, it might have the wrong data type for the column, or it might be out of range.

For transactional tables, an error occurs for invalid or missing values in a statement when either of the STRICT_ALL_TABLES or STRICT_TRANS_TABLES modes are enabled. The statement is aborted and rolled back.

For nontransactional tables, the behavior is the same for either mode, if the bad value occurs in the first row to be inserted or updated. The statement is aborted and the table remains unchanged. If the statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the result depends on which strict option is enabled:

· For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However, in this case, the earlier rows still have been inserted or updated. This means that you might get a partial update, which might not be what you want. To avoid this, it is best to use single-row statements because these can be aborted without changing the table.

· For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the column and insert the adjusted value. If a value is missing, MySQL inserts the implicit default value for the column data type. In either case, MySQL generates a warning rather than an error and continues processing the statement.

ANSI

This mode changes syntax and behavior to conform more closely to standard SQL

REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, ANSI

TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is “give an error instead of a warning” when inserting an incorrect value into a column.

Note: The INSERT/UPDATE aborts as soon as the error is noticed. This may not be what you want if you are using a nontransactional storage engine, because data changes made prior to the error may not be rolled back, resulting in a “partially done” update.

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER.

10. MySQL Server Logs

10.1 The Error Log

The error log contains information indicating when mysqld was started and stopped and also any critical errors that occur while the server is running. If mysqld notices a table that needs to be automatically checked or repaired, it writes a message to the error log.

You can specify where mysqld writes the error log with the --log-error[=file_name] option. If the option is given with no file_name value, mysqld uses the name host_name.err by default. The server creates the file in the data directory unless an absolute path name is given to specify a different directory.

To rename the file, you can do so manually before flushing. Then flushing the logs reopens a new file with the original file name. For example, you can rename the file and create a new one using the following commands:

shell> mv host_name.err host_name.err-old

shell> mysqladmin flush-logs

shell> mv host_name.err-old backup-directory

The --log-warnings option or log_warnings system variable can be used to control warning logging to the error log. The default value is enabled (1). Warning logging can be disabled using a value of 0. If the value is greater than 1, aborted connections are written to the error log.

10.2 The General Query Log

The general query log is a general record of what mysqld is doing. The server writes information to this log when clients connect or disconnect, and it logs each SQL statement received from clients. The general query log can be very useful when you suspect an error in a client and want to know exactly what the client sent to mysqld.

Control the general query log at server startup as follows:

· Before 5.1.6, the general query log destination is always a file. To enable the log, start mysqld with the –log[=file_name].

· As of MySQL 5.1.6, the destination can be a file or a table, or both. Start mysqld with the –log[=file_name] and optionally use --log-output to specify the log destination.

--log-output

This option determines the destination for general query log and slow query log output. The option value can be given as one or more of the words TABLE, FILE, or NONE. If the option is given without a value, the default is FILE. TABLE select logging to the general_log and slow_log tables in the mysql database as a destination. FILE selects logging to log files as a destination. NONE disables logging. This option selects log output destinations, but does not enable log output.

· As of MySQL 5.1.12, as an alternative to --log or -l, use --general_log[={0|1}] to specify the initial general query log state.

· As of MySQL 5.1.12, use --general_log[={0|1}] to enable or disable the general query log, and optionally --general_log_file=file_name to specify a log file name. The --log option is deprecated.

If you specify no name for the general query log file, the default name is host_name.log. The server creates the file in the data directory unless an absolute path name is given to specify a different directory.

From MySQL 5.1.12 we can control the general query log at runtime. Use the global general_log and general_log_file system variables. Set general_log to 0 (or OFF) to disable the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file.

To rename the file, you can do so manually before flushing. Then flushing the logs reopens a new file with the original file name. For example, you can rename the file and create a new one using the following commands:

shell> mv host_name.log host_name-old.log

shell> mysqladmin flush-logs

shell> mv host_name-old.log backup-directory

The session sql_log_off variable can be set to ON or OFF to disable or enable general query logging for the current connection.

10.3 The Binary Log

The binary log contains “events” that describe database changes such as table creation operations or changes to table data. It also contains events for statements that potentially could have made changes (for example, a DELETE which matched no rows), unless row-based logging is used. The binary log also contains information about how long each statement took that updated data. The binary log has two important purposes:

· For replication purpose.

· Data recovery operations.

Running a server with binary logging enabled makes performance slightly slower. However, the benefits of the binary log in enabling you to set up replication and for restore operations generally outweigh this minor performance decrement.

The binary log is not used for statements such as SELECT or SHOW that do not modify data.

The format of the events recorded in the binary log is dependent on the binary logging format. Three format types are supported.

1. statement-based logging (causes logging to be statement-based)

2. row-based logging (causes logging to be row-based) (5.1.5)

3. mixed-base logging (causes logging to use mixed format) (5.1.8)

Statement-Based Logging: Propogates all the SQL statements which are executed in the server.

Row-Based Logging: writes events to the binary log that indicate how individual table rows are affected.

Mixed-Logging: With mixed logging, statement-based logging is used by default, but the logging mode switches automatically to row-based in certain cases.

Setting The Binary Log Format

The logging format also can be switched at runtime. To specify the format globally for all clients, set the global value of the binlog_format system variable:

mysql> SET GLOBAL binlog_format = 'STATEMENT';

mysql> SET GLOBAL binlog_format = 'ROW';

mysql> SET GLOBAL binlog_format = 'MIXED';

An individual client can control the logging format for its own statements by setting the session value of binlog_format:

mysql> SET SESSION binlog_format = 'STATEMENT';

mysql> SET SESSION binlog_format = 'ROW';

mysql> SET SESSION binlog_format = 'MIXED';

To change the global binlog_format value, you must have the SUPER privilege.

Binary Log Options and Variables

--log-bin[=base_name]

Enable binary logging. The server logs all statements that change data to the binary log.

binlog_format (5.1.5)

This variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED.

--log-bin-index[=file_name]

The index file for binary log file names. If you omit the file name, and if you did not specify one with --log-bin, MySQL uses host_name-bin.index as the file name.

--binlog-do-db=db_name

Logs only the specific database changes.

Statement-based logging: Only those statements are written to the binary log where the default database (that is, the one selected by USE) is db_name. To specify more than one database, use this option multiple times, once for each database; however, doing so does not cause cross-database statements such as UPDATE some_db.some_table SET foo='bar' to be logged while a different database (or no database) is selected.

Row-based logging: Logging is restricted to database db_name. Only changes to tables belonging to db_name are logged; the default database has no effect on this. Suppose that the server is started with --binlog-do-db=sales and row-based logging is in effect, and then the following statements are executed:

USE prices;

UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the UPDATE statement; this occurs whether or not the USE statement was issued.

--binlog-ignore-db=db_name

Statement-based logging: Tells the server to not log any statement where the default database (that is, the one selected by USE) is db_name.

Row-based format: Tells the server not to log updates to any tables in the database db_name. The current database has no effect.

--binlog_cache_size

The size of the cache to hold the SQL statements for the binary log during a transaction. A binary log cache is allocated for each client if the server supports any transactional storage engines and if the server has the binary log enabled.

--max_binlog_size

If a write to the binary log causes the current log file size to exceed the value of this variable, the server rotates the binary logs. The minimum value is 4096 bytes. The maximum and default value is 1GB.

--sync_binlog

If the value of this variable is greater than 0, the MySQL server synchronizes its binary log to disk. There is one write to the binary log per statement if autocommit is enabled, and one write per transaction otherwise. The default value of sync_binlog is 0, which does no synchronizing to disk—in this case, the server relies on the operating system to flush the binary log's contents from to time. A value of 1 is the safest choice because in the event of a crash you lose at most one statement or transaction from the binary log. However, But it is also the slowest choice.

mysqld appends a numeric extension to the binary log basename to generate binary log file names. The number increases each time the server creates a new log file, thus creating an ordered series of files. The server creates a new file in the series each time it starts or flushes the logs. The server also creates a new binary log file automatically after the current log's size reaches max_binlog_size. A binary log file may become larger than max_binlog_size if you are using large transactions because a transaction is written to the file in one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file that contains the names of all used binary log files. By default, this has the same basename as the binary log file, with the extension '.index'. You can change the name of the binary log index file with the --log-bin-index[=file_name] option. You should not manually edit this file while mysqld is running; doing so would confuse mysqld.

Deleting Binary Logs:

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE BINARY LOGS.

mysql> RESET MASTER;

mysql> PURGE BINARY|MASTER LOGS TO ‘<filename>’;

A client that has the SUPER privilege can disable binary logging of its own statements by using a SET sql_log_bin=0 statement.

You can display the contents of binary log files with the mysqlbinlog utility.

mysql> mysqlbinlog <filename> > log.txt;

Options:

--database=db_name, -d db_name

This option causes mysqlbinlog to output entries from the binary log (local log only) that occur while db_name is been selected as the default database by USE.

--host=host_name, -h host_name

--password[=password], -p[password]

--port=port_num, -P port_num

--socket=path, -S path

--result-file=name, -r name

Direct output to the given file.

--start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime argument. The datetime value is relative to the local time zone on the machine where you run mysqlbinlog.

Shell > mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

--stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than the datetime argument. This option is useful for point-in-time recovery.

--start-position=N, -j N

Start reading the binary log at the first event having a position equal to or greater than N. This option applies to the first log file named on the command line. This option is useful for point-in-time recovery.

--stop-position=N

Stop reading the binary log at the first event having a position equal to or greater than N. This option applies to the last log file named on the command line. This option is useful for point-in-time recovery.

10.4 The Slow Query Log

The slow query log consists of all SQL statements that took more than long_query_time seconds to execute. The time to acquire the initial table locks is not counted as execution time. mysqld writes a statement to the slow query log after it has been executed and after all locks have been released, so log order might be different from execution order.

To enable the slow query log, start mysqld with the --log-slow-queries[=file_name] option.

--long_query_time (min=1, default=10)

If a query takes longer than this many seconds, the server increments the Slow_queries status variable. If you are using the --log-slow-queries option, the query is logged to the slow query log file.

· Before 5.1.6, the slow query log destination is always a file.

· As of MySQL 5.1.6, the destination can be a file or a table.

· As of MySQL 5.1.12, as an alternative to --log-slow-queries, use --slow_query_log[={0|1}] to specify the initial slow query log state. In this case, the default slow query log file name is used.

· As of MySQL 5.1.29, use --slow_query_log[={0|1}] to enable or disable the slow query log, and optionally --slow_query_log_file=file_name to specify a log file name. The --log-slow-queries option is deprecated.

If you specify no name for the slow query log file, the default name is host_name-slow.log. The server creates the file in the data directory unless an absolute path name is given to specify a different directory.

11. Backup and Recovery

It is important to back up your databases so that you can recover your data and be up and running again in case problems occur, such as system crashes, hardware failures, or users deleting data by mistake. Backups are also essential as a safeguard before upgrading a MySQL installation, and they can be used to transfer a MySQL installation to another system or to set up replication slave servers. MySQL offers a variety of backup strategies from which you can choose the methods that best suit the requirements.

11.1. Backup and Recovery Types

Logical Versus Physical (Raw) Backups:

Logical backups save information represented as logical database structure (CREATE DATABASE, CREATE TABLE statements) and content (INSERT statements or delimited-text files). Physical backups consist of raw copies of the directories and files that store database contents.

Logical backup methods have these characteristics:

· The backup is done by querying the MySQL server to obtain database structure and content information.

· Backup is slower than physical methods because the server must access database information and convert it to logical format. If the output is written on the client side, the server must also send it to the backup program.

· Backup and restore granularity is available at the server level (all databases), database level (all tables in a particular database), or table level. This is true regardless of storage engine.

· The backup does not include log or configuration files, or other database-related files that are not part of databases

· Backups stored in logical format are machine independent and highly portable.

· Logical backups are performed with the MySQL server running. The server is not taken offline.

· Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE statement. These work for any storage engine, even MEMORY.

· To restore logical backups, SQL-format dump files can be processed using the mysql client. To load delimited-text files, use the LOAD DATA INFILE statement or the mysqlimport client.

Physical backup methods have these characteristics:

· The backup consists of exact copies of database directories and files. Typically this is a copy of all or part of the MySQL data directory. Data from MEMORY tables cannot be backed up this way because their contents are not stored on disk.

· Physical backup methods are faster than logical because they involve only file copying without conversion.

· Backup and restore granularity ranges from the level of the entire data directory down to the level of individual files. This may or may not provide for table-level granularity, depending on storage engine.

· In addition to databases, the backup can include any related files such as log or configuration files.

· Backups are portable only to other machines that have identical or similar hardware characteristics.

· Backups can be performed while the MySQL server is not running. If the server is running, it is necessary to perform appropriate locking so that the server does not change database contents during the backup.

Local Versus Remote Backups:

A local backup is performed on the same host where the MySQL server runs, whereas a remote backup is done from a different host. For some types of backups, the backup can be initiated from a remote host even if the output is written locally on the server host.

· mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT statements), local or remote dumps can be done and generate output on the client. For delimited-text output (with the --tab option), data files are created on the server host.

· mysqlhotcopy performs only local backups: It connects to the server to lock it against data modifications and then copies local table files.

· SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file is created on the server host.

Full Versus Incremental Backups:

A full backup includes all data managed by a MySQL server at a given point in time. An incremental backup consists of the changes made to the data during a given time span (from one point in time to another). MySQL has different ways to perform full backups. Incremental backups are made possible by enabling the server's binary log, which the server uses to record data changes.

11.2 Database Backup Methods

Making Backups by Copying Table Files:

For storage engines that represent each table using its own files, tables can be backed up by copying those files. For example, My-ISAM tables are stored as files, so it is easy to do a backup by copying files (*.frm, *.MYD, and *.MYI files). To get a consistent backup, stop the server or do a LOCK TABLES on the relevant tables followed by FLUSH TABLES for the tables. You need only a read lock; this enables other clients to continue to query the tables while you are making a copy of the files in the database directory. The FLUSH TABLES statement is needed to ensure that the all active index pages are written to disk before you start the backup.

But note that table file copying methods do not work if your database contains InnoDB tables. mysqlhotcopy does not work for InnoDB tables because InnoDB does not necessarily store table contents in database directories.

Backing Up and Recovering of InnoDB Database:

InnoDB Hot Backup enables you to back up a running MySQL database, including InnoDB and MyISAM tables, with minimal disruption to operations while producing a consistent snapshot of the database. When InnoDB Hot Backup is copying InnoDB tables, reads and writes to both InnoDB and MyISAM tables can continue. During the copying of MyISAM tables, reads (but not writes) to those tables are permitted. In addition, InnoDB Hot Backup supports creating compressed backup files, and performing backups of subsets of InnoDB tables.

If you are able to shut down your MySQL server, you can make a binary backup that consists of all files used by InnoDB to manage its tables. Use the following procedure:

1. Shut down the MySQL server and make sure that it stops without errors.

2. Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.

3. Copy all the .frm files for InnoDB tables to a safe place.

4. Copy all InnoDB log files (ib_logfile files) to a safe place.

5. Copy your my.cnf configuration file or files to a safe place.

In addition to making binary backups as just described, regularly make dumps of your tables with mysqldump. A binary file might be corrupted without you noticing it. Dumped tables are stored into text files that are human-readable, so spotting table corruption becomes easier. Also, because the format is simpler, the chance for serious data corruption is smaller. mysqldump also has a --single-transaction option for making a consistent snapshot without locking out other clients.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy of your database at database sites requiring high availability. To be able to recover your InnoDB database to the present from the time at which the binary backup was made, run your MySQL server with binary logging turned on. To achieve point-in-time recovery after restoring a backup, you can apply changes from the binary log that occurred after the backup was made.

To recover from a crash of your MySQL server, the only requirement is to restart it. InnoDB automatically checks the logs and performs a roll-forward of the database to the present. InnoDB automatically rolls back uncommitted transactions that were present at the time of the crash.

Making Delimited-Text File Backups:

To create a text file containing a table's data, you can use

mysql > SELECT * INTO OUTFILE 'file_name' FROM tbl_name.

Here is an example that produces a file in the comma-separated values (CSV) format used by many programs:

mysql > SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'

 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

 LINES TERMINATED BY '\n'

 FROM test_table;

The file is created on the MySQL server host, not the client host. For this statement, the output file cannot already exist because permitting files to be overwritten constitutes a security risk. This method works for any kind of data file, but saves only table data, not the table structure.

To reload a delimited-text data file, use LOAD DATA INFILE or mysqlimport., will cover in later sections.

mysqlhotcopy — A Database Backup Program

It uses FLUSH TABLES, LOCK TABLES, and cp or scp to make a database backup. It is a fast way to make a backup of the database or single tables, but it can be run only on the same machine where the database directories are located. mysqlhotcopy works only for backing up MyISAM and ARCHIVE tables. It runs on Unix.

To use mysqlhotcopy, you must have read access to the files for the tables that you are backing up, the SELECT privilege for those tables, the RELOAD privilege (to be able to execute FLUSH TABLES), and the LOCK TABLES privilege (to be able to lock the tables).

shell> mysqlhotcopy db_name [/path/to/new_directory]

shell> mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

11.3. Using mysqldump for Backups:

11.3.1. Dumping Data in SQL Format:

This section describes how to use mysqldump to produce dump files, and how to reload dump files. A dump file can be used in several ways:

· As a backup to enable data recovery in case of data loss.

· As a source of data for setting up replication slaves.

There are three general ways to invoke mysqldump:

shell> mysqldump [options] db_name [tbl_name ...]

shell> mysqldump [options] --databases db_name ...

shell> mysqldump [options] --all-databases

By default, mysqldump writes information as SQL statements to the standard output. You can save the output in a file:

shell> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

shell> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

shell> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names. Without this option, mysqldump treats the first name as a database name and those following as table names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE statements prior to the dump output for each database. This ensures that when the dump file is reloaded, it creates each database if it does not exist and makes it the default database so database contents are loaded into the same database from which they came.

To dump a single database, name it on the command line:

shell> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

shell> mysqldump test > dump.sql

To dump only specific tables from a database, name them on the command line following the database name:

shell> mysqldump test t1 t3 t7 > dump.sql

mysqldump does not dump the INFORMATION_SCHEMA database by default. As of MySQL 5.1.38, mysqldumpdumps INFORMATION_SCHEMA if you name it explicitly on the command line, although you must also use the --skip-lock-tables option. Before 5.1.38, mysqldump silently ignores INFORMATION_SCHEMA even if you name it explicitly on the command line.

Use of --opt is the same as specifying --add-drop-table, --add-locks, --create-options, --disable-keys, --extended-insert, --lock-tables, --quick, and --set-charset. All of the options that --opt stands for also are on by default because --opt is on by default.

To select the effect of --opt except for some features, use the --skip option for each feature. To disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-quick.

Use of --compact is the same as specifying --skip-add-drop-table, --skip-add-locks, --skip-comments,--skip-disable-keys, and --skip-set-charset options.

Options:

--add-drop-database

Add a DROP DATABASE statement before each CREATE DATABASE statement.

--add-drop-table

Add a DROP TABLE statement before each CREATE TABLE statement.

--add-drop-trigger

Add a DROP TRIGGER statement before each CREATE TRIGGER statement.

--add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements.

--all-databases

Dump all tables in all databases.

--complete-insert

Use complete INSERT statements that include column names.

--databases

To dump several databases.

--disable-keys

For each table, surround the INSERT statements with statements to disable and

enable keys.

--dump-date

Include dump date as "Dump completed on" comment if --comments is given

--extended-insert

Use multiple-row INSERT syntax that include several VALUES lists

--tab=path

Produce tab-separated data files

--fields-enclosed-by=string
This option is used with the --tab option and has the same meaning as the

corresponding clause for LOAD DATA INFILE

--fields-terminated-by=string
This option is used with the --tab option and has the same meaning as the

corresponding clause for LOAD DATA INFILE

--flush-logs

Flush the MySQL server log files before starting the dump

--no-create-db

This option suppresses the CREATE DATABASE statements

--no-create-info

Do not write CREATE TABLE statements that re-create each dumped table.

--no-data

Do not dump table contents.

--opt

Shorthand for --add-drop-table --add-locks --create-options --disable-keys

--extended-insert --lock-tables --quick –set-charset.

--routines

Dump stored routines (procedures and functions) from the dumped databases

--skip-trigers

Do not dump triggers.

--skip-add-drop-table

Do not add a DROP TABLE statement before each CREATE TABLE statement

--skip-extended-insert

Turn off extended-insert

--tables

Override the --databases or -B option

 --lock-all-tables

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration of the whole dump. This option automatically turns off --single-transaction and --lock-tables.

--lock-tables, -l

For each dumped database, lock all tables to be dumped before dumping them. The tables are locked with READ LOCAL to permit concurrent inserts in the case of MyISAM tables.

--master-data[=value]

Use this option to dump a master replication server to produce a dump file that can be used to set up another server as a slave of the master. It causes the dump output to include a CHANGE MASTER TO statement. If the option value is 2, the CHANGE MASTER TO statement is written as an SQL comment, and thus is informative only; it has no effect when the dump file is reloaded. If the option value is 1, the statement is not written as a comment and takes effect when the dump file is reloaded. If no option value is specified, the default value is 1. It automatically also turns on --lock-all-tables.

--compact

Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.

11.3.2. Dumping Data in Delimited-Text Format with mysqldump:

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory and dumps tables individually in that directory using two files for each table. The table name is the basename for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql file contains a CREATE TABLE statement for the table. The .txt file contains the table data, one line per table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

shell> mysqldump --tab=/tmp db1

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the --tab directory must exist on both the local and remote hosts, and the .txt files will be written by the server in the remote directory (on the server host), whereas the .sql files will be written by mysqldump in the local directory.

11.3.3. Reloading SQL-Format Backups:

To reload a dump file written by mysqldump that consists of SQL statements, use it as input to the mysql client.

· When you reload the dump file, you must specify a default database name so that the server knows which database to reload.

· For reloading, you can specify a database name different from the original name, which enables you to reload the data into a different database.

· If the database to be reloaded does not exist, you must create it first.

If the dump file was created by mysqldump with the --all-databases or --databases option, it contains CREATE DATABASE and USE statements and it is not necessary to specify a default database into which to load the data:

shell> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the database first Then specify the database name when you load the dump file:

shell> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the dump file:

mysql> CREATE DATABASE IF NOT EXISTS db1;

mysql> USE db1;

mysql> source dump.sql

Reloading Delimited-Text Format Backups:

For backups produced with mysqldump --tab, each table is represented in the output directory by an .sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table data. To reload a table, first change location into the output directory. Then process the .sql file with mysql to create an empty table and process the .txt file to load the data into the table:

shell> mysql db1 < t1.sql

shell> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA INFILE statement from within the mysql client:

mysql> USE db1;

mysql> LOAD DATA [LOCAL] INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must use the same options with mysqlimport or LOAD DATA INFILE to ensure proper interpretation of the data file contents:

shell> mysqlimport –fields-terminated-by=, --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;

mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1 FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"' LINES TERMINATED BY '\r\n';

Point-in-Time (Incremental) Recovery Using the Binary Log

Point-in-time recovery is based on these principles:

The source of information for point-in-time recovery is the set of incremental backups represented by the binary log files generated subsequent to the full backup operation. Therefore, the server must be started with the --log-bin option to enable binary logging. To restore data from the binary log, you must know the name and location of the current binary log files.

suppose that exactly at 10:00 a.m. on April 20, 2005 an SQL statement was executed that deleted a large table. To restore the table and data, you could restore the previous night's backup, and then execute the following command:

shell> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \

 /var/log/mysql/bin.123456 | mysql -u root -p

If you did not detect the erroneous SQL statement that was entered until hours later, you will probably also want to recover the activity that occurred afterward. Based on this, you could run mysqlbinlog again with a start date and time, like so:

shell> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \

 /var/log/mysql/bin.123456 | mysql -u root -p

Forcing InnoDB Recovery:

If there is database page corruption, you may want to dump your tables from the database with SELECT INTO ... OUTFILE.Usually, most of the data obtained in this way is intact. However, it is possible that the corruption might cause SELECT * FROM tbl_name statements or InnoDB background operations to crash or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, you can use the innodb_force_recovery option to force the InnoDB storage engine to start up while preventing background operations from running, so that you are able to dump your tables. For example, you can add the following line to the [mysqld] section of your option file before restarting the server:

[mysqld]

innodb_force_recovery = 4

innodb_force_recovery is 0 by default (normal startup without forced recovery) The permissible nonzero values for innodb_force_recovery follow. A larger number includes all precautions of smaller numbers. If you are able to dump your tables with an option value of at most 4, then you are relatively safe that only some data on corrupt individual pages is lost. A value of 6 is more drastic because database pages are left in an obsolete state, which in turn may introduce more corruption into B-trees and other database structures.

1 (SRV_FORCE_IGNORE_CORRUPT)

Let the server run even if it detects a corrupt page. Try to make SELECT * FROM tbl_name jump over corrupt index records

and pages, which helps in dumping tables.

2 (SRV_FORCE_NO_BACKGROUND)

Prevent the main thread from running. If a crash would occur during the purge operation, this recovery value prevents it.

3 (SRV_FORCE_NO_TRX_UNDO)

Do not run transaction rollbacks after recovery.

4 (SRV_FORCE_NO_IBUF_MERGE)

Prevent insert buffer merge operations. If they would cause a crash, do not do them. Do not calculate table statistics.

5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Do not look at undo logs when starting the database: InnoDB treats even incomplete transactions as committed.

6 (SRV_FORCE_NO_LOG_REDO)

Do not do the log roll-forward in connection with recovery. The database must not otherwise be used with any nonzero value of innodb_force_recovery. As a safety measure, InnoDB prevents users from performing INSERT, UPDATE, or DELETE operations when innodb_force_recovery is greater than 0.

You can SELECT from tables to dump them, or DROP or CREATE tables even if forced recovery is used. If you know that a given table is causing a crash on rollback, you can drop it. You can also use this to stop a runaway rollback caused by a failing mass import or ALTER TABLE. You can kill the mysqld process and set innodb_force_recovery to 3 to bring the database up without the rollback, then DROP the table that is causing the runaway rollback.

12. Running Multiple MySQL Instances on One Machine

In some cases, you might want to run multiple instances of MySQL on a single machine. You might want to test a new MySQL release while leaving an existing production setup undisturbed. Or you might want to give different users access to different mysqld servers that they manage themselves.

It is possible to use a different MySQL server binary per instance, or use the same binary for multiple instances, or any combination of the two approaches. For example, you might run a server from MySQL 5.0 and one from MySQL 5.1, to see how different versions handle a given workload. Or you might run multiple instances of the current production version, each managing a different set of databases.

Whether or not you use distinct server binaries, each instance that you run must be configured with unique values for several operating parameters. This eliminates the potential for conflict between instances.

12.1. Setting Up Multiple Data Directories

Each MySQL Instance on a machine should have its own data directory. The location is specified using the --datadir=path option.

There are different methods of setting up a data directory for a new instance:

· Create a new data directory

· Copy an existing data directory

Note: Normally, you should never have two servers that update data in the same databases. This may lead to unpleasant surprises if your operating system does not support fault-free system locking. If (despite this warning) you run multiple servers using the same data directory and they have logging enabled, you must use the appropriate options to specify log file names that are unique to each server. Otherwise, the servers try to log to the same files.

Create a New Data Directory:

With this method, the data directory will be in the same state as when you first install MySQL. It will have the default set of MySQL accounts and no user data.On Unix, initialize the data directory by running mysql_install_db.

Copy an Existing Data Directory:

With this method, any MySQL accounts or user data present in the data directory are carried over to the new data directory.

1. Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that the instance flushes any pending changes to disk.

2. Copy the data directory to the location where the new data directory should be.

3. Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for the new instance.

4. Modify the new option file so that any pathnames referring to the original data directory refer to the new data directory. Also, modify any other options that must be unique per instance, such as the TCP/IP port number and the log files.

5. Start the new instance, telling it to use the new option file.

12.2. Running Multiple MySQL Instances on Unix:

One way is to run multiple MySQL instances on Unix is to compile different servers with different default TCP/IP ports and Unix socket files so that each one listens on different network interfaces. Compiling in different base directories for each installation also results automatically in a separate, compiled-in data directory, log file, and PID file location for each server.

Assume that an existing 5.0 server is configured for the default TCP/IP port number (3306) and Unix socket file (/tmp/mysql.sock). To configure a new 5.1.57 server to have different operating parameters, use a configure command something like this:

shell> ./configure --with-tcp-port=port_number \

--with-unix-socket-path=file_name \

--prefix=/usr/local/mysql-5.1.57

Here, port_number and file_name must be different from the default TCP/IP port number and Unix socket file path name, and the --prefix value should specify an installation directory different from the one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command to find out what operating parameters it is using for several important configurable variables, including the base directory and Unix socket file name:

shell> mysqladmin --host=host_name --port=port_number variables

You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port number. It is also possible to use the same server binary and start each invocation of it with different parameter values at runtime. One way to do so is by using command-line options:

shell> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a –datadir=path option to mysqld_safe so that the server uses a different data directory.

Alternatively, put the options for each server in a different option file, then start each server using a --defaults-file option that specifies the path to the appropriate option file. For example, if the option files for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/my.cnf2, start the servers like this: command:

shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf

shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2

Using Client Programs in a Multiple-Server Environment:

To connect with a client program to a MySQL server that is listening to different network interfaces from those compiled into your client, you can use one of the following methods:

· Start the client with --host=host_name --port=port_number to connect using TCP/IP to a remote server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a local server, or with --host=localhost --socket=file_name to connect to a local server using a Unix socket file.

MySQL Instance Manager

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in MySQL 5.5.

12.3 Using mysqld_multi for Managing Multiple MySQL Servers

mysqld_multi is designed to manage several mysqld processes that listen for connections on different Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --config-file option). N can be any positive integer. This number is referred to in the following discussion as the option group number, or GNR.

1. Initialize the new datadir.

2. Change the option file.

Sample Option file is as below:

[mysqld_multi]

mysqld = /usr/local/bin/mysqld_safe

mysqladmin = /usr/local/bin/mysqladmin

user = multi_admin

password = multipass

[mysqld2]

socket = /tmp/mysql.sock2

port = 3307

pid-file = /usr/local/mysql/var2/hostname.pid2

datadir = /usr/local/mysql/var2

language = /usr/local/share/mysql/english

user = john

[mysqld3]

socket = /tmp/mysql.sock3

port = 3308

pid-file = /usr/local/mysql/var3/hostname.pid3

datadir = /usr/local/mysql/var3

language = /usr/local/share/mysql/swedish

user = monty

To invoke mysqld_multi, use the following syntax:

shell> mysqld_multi [options] {start|stop|report} [GNR[,GNR] ...]

start, stop, and report indicate which operation to perform. You can perform the designated operation for a single server or multiple servers, depending on the GNR list that follows the option name. If there is no list, mysqld_multi performs the operation for all servers in the option file.

Each GNR value represents an option group number or range of group numbers. The value should be the number at the end of the group name in the option file. For example, the GNR for a group named [mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group ranges can be specified on the command line, separated by commas.

This command starts a single server using option group [mysqld17]:

shell> mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through [mysqld13]:

shell> mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

shell> mysqld_multi --example

Options:

--example

Display a sample option file.

--mysqladmin=prog_name
The mysqladmin binary to be used to stop servers.

--mysqld=prog_name
The mysqld binary to be used.

--password=password
The password of the MySQL account to use when invoking mysqladmin.

--user=user_name

The user name of the MySQL account to use when invoking mysqladmin.

13. General Security Issues

13.1. General Security Guidelines

· Do not ever give anyone (except MySQL root accounts) access to the user table in the mysql database! This is critical.

· Learn the MySQL access privilege system. The GRANT and REVOKE statements are used for controlling access to MySQL. Do not grant more privileges than necessary. Never grant privileges to all hosts.

· Do not store any plaintext passwords in your database. Instead, use MD5(), SHA1(), or some other one-way hashing function and store the hash value.

· Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put MySQL behind the firewall or in a demilitarized zone.

· See what are the privileges provided by the MySQL.

14. Optimization

Optimization is a complex task because ultimately it requires understanding of the entire system to be optimized. Although it may be possible to perform some local optimizations with little knowledge of your system or application, the more optimal you want your system to become, the more you must know about it.

14.1 Optimization Overview

The most important factor in making a system fast is its basic design. You must also know what kinds of processing your system is doing, and what its bottlenecks are. In most cases, system bottlenecks arise from these sources:

Disk seeks: It takes time for the disk to find a piece of data. With modern disks, the mean time for this is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time improves slowly with new disks and is very hard to optimize for a single table. The way to optimize seek time is to distribute the data onto more than one disk.

Disk reading and writing: When the disk is at the correct position, we need to read the data. With modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than seeks because you can read in parallel from multiple disks.

CPU cycles: When we have the data in main memory, we need to process it to get our result. Having small tables compared to the amount of memory is the most common limiting factor. But with small tables, speed is usually not the problem.

 14.2 Obtaining Query Execution Plan Information

14.2.1 Optimizing Queries with EXPLAIN

The EXPLAIN statement can be used either as a way to obtain information about how MySQL executes a SELECT statement or as a synonym for DESCRIBE.

· When you precede a SELECT statement with the keyword EXPLAIN, MySQL displays information from the optimizer about the query execution plan. That is, MySQL explains how it would process the SELECT, including information about how tables are joined and in which order.

· EXPLAIN PARTITIONS is available beginning with MySQL 5.1.5. It is useful only when examining queries involving partitioned tables.

· EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name or SHOW COLUMNS FROM tbl_name.

If you have a problem with indexes not being used when you believe that they should be, you should run ANALYZE TABLE to update table statistics such as cardinality of keys, that can affect the choices the optimizer makes.

EXPLAIN Output Format:

EXPLAIN returns a row of information for each table used in the SELECT statement. The tables are listed in the output in the order that MySQL would read them while processing the query. MySQL resolves all joins using a nested-loop join method. This means that MySQL reads a row from the first table, and then finds a matching row in the second table, the third table, and so on. When all tables are processed, MySQL outputs the selected columns and backtracks through the table list until a table is found for which there are more matching rows. The next row is read from this table and the process continues with the next table.

Example:

mysql> EXPLAIN SELECT * FROM tbl_a a, tbl_b b where a.id = b.id;

+----+---------------+-------+-----------+-------------------+--------------+------------+--------+------+-------+

 | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+---------------+-------+-----------+-------------------+--------------+------------+--------+------+-------+

 | 1 | SIMPLE | b | system | PRIMARY | NULL | NULL | NULL | 1 | |

 | 1 | SIMPLE | a | const | PRIMARY | PRIMARY | 8 | const | 1 | |

+----+---------------+-------+-----------+-------------------+--------------+------------+---------+------+-------+

14.2.2 Optimizing SELECT Statements

First, one factor affects all statements: The more complex your permissions setup, the more overhead you have. Using simpler permissions when you issue GRANT statements enables MySQL to reduce permission-checking overhead when clients execute statements. For example, if you do not grant any table-level or column-level privileges, the server need not ever check the contents of the tables_priv and columns_priv tables. Similarly, if you place no resource limits on any accounts, the server does not have to perform resource counting. If you have a very high statement-processing load, it may be worth the time to use a simplified grant structure to reduce permission-checking overhead.

If your problem is with a specific MySQL expression or function, you can perform a timing test by invoking the BENCHMARK() function using the mysql client program. Its syntax is

Syntax:

mysql > BENCHMARK(loop_count,expression);

The return value is always zero, but mysql prints a line displaying approximately how long the statement took to execute. For example:

mysql> SELECT BENCHMARK(1000000,1+1);

+---------------------------------------+

| BENCHMARK(1000000,1+1) |

+---------------------------------------+

| 0 |

+---------------------------------------+

1 row in set (0.32 sec)

It shows that MySQL can execute 1,000,000 simple addition expressions in 0.32 seconds on that system.

Speed of SELECT Statements:

In general, when you want to make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add an index. You can use the EXPLAIN statement to determine which indexes are used for a SELECT.

Some general tips for speeding up queries on MyISAM tables:

· To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on a table after it has been loaded with data. This updates a value for each index part that indicates the average number of rows that have the same value. (For unique indexes, this is always 1.) MySQL uses this to decide which index to choose when you join two tables based on a nonconstant expression. You can check the result from the table analysis by using SHOW INDEX FROM tbl_name and examining the Cardinality value.

· To sort an index and data according to an index, use myisamchk --sort-index (assuming that you want to sort on index 1). This is a good way to make queries faster if you have a unique index from which you want to read all rows in order according to the index. The first time you sort a large table this way, it may take a long time.

WHERE Clause Optimization:

This section discusses optimizations that can be made for processing WHERE clauses. The examples use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE statements.

· Removal of unnecessary parentheses:

((a AND b) AND c OR (((a AND b) AND (c AND d))))

=> (a AND b AND c) OR (a AND b AND c AND d)

· Constant folding:

(a<b AND b=c) AND a=5

=> b>5 AND b=c AND a=5

In some cases, MySQL can read rows from the index without even consulting the data file. If all columns used from the index are numeric, only the index tree is used to resolve the query.

· Remove non key columns in WHERE clause.

· Should not use IN, LIKE operators.

· Avoid sub queries and queries in FROM clause.

· Use functions in the left side of the condition.

· Should not use DISTINCT clause, instead use GROUP BY clause.

· Do not create duplicate indexes.

14.3. Tuning Server Parameters

For a mysqld server that is currently running, you can see the current values of its system variables by connecting to it and issuing this statement:

mysql> SHOW VARIABLES;

You can also see some statistical and status indicators for a running server by issuing this statement:

mysql> SHOW STATUS;

System variable and status information also can be obtained using mysqladmin:

shell> mysqladmin variables

shell> mysqladmin extended-status

When tuning a MySQL server, the two most important variables to configure are key_buffer_size and table_

open_cache. You should first feel confident that you have these set appropriately before trying to change any other variables.

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your available memory, you should increase the value of read_rnd_buffer_size to speed up the reading of rows following sorting operations.

Temp variables:

You can compare the number of internal on-disk temporary tables created to the total number of internal temporary tables created by comparing the values of the Created_tmp_disk_tables and Created_tmp_tables variables.

Server variable : tmp_table_size (Need to be increased depending upon the below values)

Status variables : Created_tmp_disk_tables, Created_tmp_tables.

Query Cache:

The cache is not used for queries of the following types:

1. Queries that are a subquery of an outer query

2. Queries executed within the body of a stored function, trigger, or event

A query cannot be cached if it contains any of the functions like CURDATE(), NOW(), CONVERT_TZ(), CURTIME(), DATABASE(), RAND(), UUID() etc.

A query also is not cached under these conditions:

1. It refers to tables in the mysql or INFORMATION_SCHEMA system database.

2. SELECT ... INTO OUTFILE.

3. It uses TEMPORARY tables.

4. It does not use any tables.

5. It generates warnings.

Two query cache-related options may be specified in SELECT statements:

SQL_CACHE

The query result is cached if it is cacheable and the value of the query_cache_type system variable is ON or DEMAND.

SQL_NO_CACHE

The query result is not cached.

Examples:

SELECT SQL_CACHE id, name FROM customer;

SELECT SQL_NO_CACHE id, name FROM customer;

Query Cache Configuration:

The have_query_cache server system variable indicates whether the query cache is available:

mysql> SHOW VARIABLES LIKE 'have_query_cache';

+--------------------------+--------+

| Variable_name | Value |

+--------------------------+--------+

| have_query_cache | YES |

+--------------------------+--------+

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0 disables the query cache. The default size is 0, so the query cache is disabled by default.

If the query cache size is greater than 0, the query_cache_type variable influences how it works. This variable can be set to the following values:

1. A value of 0 or OFF prevents caching or retrieval of cached results.

2. A value of 1 or ON enables caching except of those statements that begin with SELECT SQL_NO_CACHE.

3. A value of 2 or DEMAND causes caching of only those statements that begin with SELECT SQL_CACHE.

Individual clients can control cache behavior for their own connection by setting the SESSION query_cache_type value. For example, a client can disable use of the query cache for its own queries like this:

mysql> SET SESSION query_cache_type = 0;

When a query is to be cached, its result (the data sent to the client) is stored in the query cache during result retrieval. Therefore the data usually is not handled in one big chunk. The query cache allocates blocks for storing this data on demand, so when one block is filled, a new block is allocated. Because memory allocation operation is costly (timewise), the query cache allocates blocks with a minimum size given by the query_cache_min_res_unit system variable. When a query is executed, the last result block is trimmed to the actual data size so that unused memory is freed. Depending on the types of queries your server executes, you might find it helpful to tune the value of query_cache_min_res_unit:

· The default value of query_cache_min_res_unit is 4KB. This should be adequate for most cases.

· If most of your queries have large results (check the Qcache_total_blocks and Qcache_queries_in_cache status variables), you can increase performance by increasing query_cache_min_res_unit. However, be careful to not make it too large.

The RESET QUERY CACHE statement, to removes all query results from the query cache execute the FLUSH TABLES statement.

Status variables:

Qcache_free_blocks

The number of free memory blocks in the query cache.

qcache_hits

Whenever MySQL performs a SELECT operation, it either increments com_select or the qcache_hits status variables. com_selects thus show us the cache misses.

So get the hit ratio by this formula: qcache_hits / (qcache_hits + com_select) which gives us .9999 or 99.99%.

Qcache_inserts

The number of queries added to the query cache.

Qcache_lowmem_prunes

The number of queries that were deleted from the query cache because of low memory.

Qcache_not_cached

The number of noncached queries (not cacheable, or not cached due to the query_cache_type setting).

The information provided by the Qcache_lowmem_prunes status variable can help you tune the query cache size. It counts the number of queries that have been removed from the cache to free up memory for caching new queries. The query cache uses a least recently used (LRU) strategy to decide which queries to remove from the cache.

Other Optimizations:

sort_buffer_size

If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization or improved indexing. The entire buffer is allocated even if it is not all needed, so setting it larger than required globally will slow down most queries that sort.

myisam_sort_buffer_size

 The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or when creating indexes with CREATE INDEX or ALTER TABLE.

thread_cache_size

How many threads the server should cache for reuse. When a client disconnects, the client's threads are put in the cache if there are fewer than thread_cache_size threads there. Requests for threads are satisfied by reusing threads taken from the cache if possible, and only when the cache is empty is a new thread created. By examining the difference between the Connections and Threads_created status variables, you can see how efficient the thread cache is.

wait_timeout

The number of seconds the server waits for activity on a noninteractive connection before closing it.

15. Partitioning

15.1 Overview of Partitioning in MySQL

A partition is a division of a logical database or its constituting elements into distinct independent parts. Database partitioning is normally done for manageability, performance reasons.

The partitioning can be done by either building separate smaller databases, or by splitting selected elements, for example just one table.

Partitioning enables you to distribute portions of individual tables across a file system according to rules which you can set largely as needed.In effect, different portions of a table are stored as separate tables in different locations. The user-selected rule by which the division of data is accomplished is known as a partitioning function, which in MySQL can be the modulus, simple matching against a set of ranges or value lists, an internal hashing function, or a linear hashing function. The function is selected according to the partitioning type specified by the user.

In MySQL 5.1, all partitions of the same partitioned table must use the same storage engine; for example, you cannot use MyISAM for one partition and InnoDB for another. However, there is nothing preventing you from using different storage engines for different partitioned tables.

15.1 Partitioning Types

This section discusses the types of partitioning which are available in MySQL 5.1.

1. RANGE Partitioning

2. LIST Partitioning

3. HASH Partitioning

4. KEY Partitioning

RANGE Partitioning:

RANGE partitioning contains rows for which the partitioning expression value lies within a given range. Ranges should be contiguous but not overlapping, and are defined using the VALUES LESS THAN operator.

Suppose if you are creating a table to hold the employee details as below:

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 dept_id INT NOT NULL

);

This table can be partitioned by range in a number of ways, depending on your needs. One way would be to use the dept_id column. For instance, you might decide to partition the table 4 ways by adding a PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 dept_id INT NOT NULL

) engine = myisam

PARTITION BY RANGE (dept_id) (

 PARTITION p0 VALUES LESS THAN (6),

 PARTITION p1 VALUES LESS THAN (11),

 PARTITION p2 VALUES LESS THAN (16),

 PARTITION p3 VALUES LESS THAN (21)

);

In this partitioning scheme, all rows corresponding to employees working at dept 1 through 5 are stored in partition p0, to those employed at dept 6 through 10 are stored in partition p1, and so on. Note that each partition is defined in order, from lowest to highest. This is a requirement of the PARTITION BY RANGE syntax; you can think of it as being analogous to a series of if ... elseif ... statements in C or Java in this regard.

It is easy to determine that a new row containing the data (72, 'Michael', 'Widenius', '1998-06-25' 13) is inserted into partition p2, but what happens when your chain adds a 21st dept_id? Under this scheme, there is no rule that covers a row whose dept_id is greater than 20, so an error results because the server does not know where to place it. You can keep this from occurring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that provides for all values greater than the highest value explicitly named.

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 dept_id INT NOT NULL

) engine = myisam

PARTITION BY RANGE (dept_id) (

 PARTITION p0 VALUES LESS THAN (6),

 PARTITION p1 VALUES LESS THAN (11),

 PARTITION p2 VALUES LESS THAN (16),

 PARTITION p3 VALUES LESS THAN MAXVALUE

);

MAXVALUE represents an integer value that is always greater than the largest possible integer value. Now, any rows whose dept_id column value is greater than or equal to 16 are stored in partition p3. At some point in the future when the number of depts has increased to 25, 30, or more you can use an ALTER TABLE statement to add new partitions for stores 21-25, 26-30, and so on.

Rather than splitting up the table data according to dept number, you can use an expression based DATE column instead. For example, let us suppose that you wish to partition based on the year that each employee joined the company. An example of a CREATE TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 dept_id INT NOT NULL

) engine = myisam

PARTITION BY RANGE (YEAR(hired)) (

 PARTITION p0 VALUES LESS THAN (1991),

 PARTITION p1 VALUES LESS THAN (1996),

 PARTITION p2 VALUES LESS THAN (2001),

 PARTITION p3 VALUES LESS THAN MAXVALUE

);

In this scheme, for all employees who joined before 1991, the rows are stored in partition p0; for those who joined in the years 1991 through 1995, in p1; for those who joined in the years 1996 through 2000, in p2; and for any workers who joined after the year 2000, in p3.

Range partitioning is particularly useful when you want or need to delete “old” data. If you are using the partitioning scheme shown immediately above, you can simply use ALTER TABLE employees DROP PARTITION p0; to delete all rows relating to employees who stopped working for the firm prior to 1991. For a table with a great many rows, this can be much more efficient than running a DELETE query such as DELETE FROM employees WHERE YEAR(separated) <= 1990;.

LIST Partitioning:

List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE, each partition must be explicitly defined. The chief difference between the two types of partitioning is that, in list partitioning, each partition is defined and selected based on the membership of a column value in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is done by using PARTITION BY LIST(expr) where expr is a column value or an expression based on a column value and returning an integer value, and then defining each partition by means of a VALUES IN (value_list), where value_list is a comma-separated list of integers.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any particular order.

Suppose if you are creating a table to hold the employee details as below:

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 dept_id INT NOT NULL

);

Suppose that there are 20 departments distributed among 4 franchises as shown in the following table.

	Branch
	Dept ID Numbers

	B1
	3, 5, 6, 9, 17

	B2
	1, 2, 10, 11, 19, 20

	B3
	4, 12, 13, 14, 18

	B4
	7, 8, 15, 16

To partition this table in such a way that rows for departments belonging to the same branch are stored in the same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 dept_id INT NOT NULL

)

PARTITION BY LIST(dept_id) (

 PARTITION pB1 VALUES IN (3,5,6,9,17),

 PARTITION pB2 VALUES IN (1,2,10,11,19,20),

 PARTITION pB3 VALUES IN (4,12,13,14,18),

 PARTITION pB4 VALUES IN (7,8,15,16)

);

This makes it easy to add or drop employee records relating to specific branch from the table. For instance, suppose that all departments in the B3 branch are removed. All rows relating to employees working at particular departments in that B3 branch can be deleted with an ALTER TABLE employees DROP PARTITION pB3 statement, which can be executed much more efficiently than the equivalent DELETE statement (DELETE FROM employees WHERE dept_id IN (4,12,13,14,18)). However, the ALTER TABLE ... DROP PARTITION statement also removes the partition itself from the definition for the table, and you must execute an ALTER TABLE ... ADD PARTITION statement to restore the table's original partitioning scheme. (This problem is resolved in MySQL 5.5, which adds the ALTER TABLE ... TRUNCATE PARTITION statement for removing all rows from a given partition without affecting the table definition.)

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values for the partitioning expression should be covered in PARTITION ... VALUES IN (...) clauses. An INSERT statement containing an unmatched partitioning column value fails with an error, as shown in this example:

mysql> INSERT INTO employees VALUES (101, ‘abc’, ‘xyz’, NOW(), 41);

ERROR 1525 (HY000): Table has no partition for value 41

When inserting multiple rows using a single INSERT statement, any rows coming before the row containing the unmatched value are inserted, but any coming after it are not.

HASH Partitioning:

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined number of partitions. With range or list partitioning, you must specify explicitly into which partition a given column value or set of column values is to be stored; with hash partitioning, MySQL takes care of this for you, and you need only specify a column value or expression based on a column value to be hashed and the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, just append to the CREATE TABLE statement a PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This can simply be the name of a column whose type is one of MySQL's integer types. In addition, you will most likely want to follow this with a PARTITIONS num clause, where num is a positive integer representing the number of partitions into which the table is to be divided.

For example, the following statement creates a table that uses hashing on the dept_id column and is divided into 4 partitions:

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 dept_id INT NOT NULL

)

PARTITION BY HASH(dept_id)

PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

Using the PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to partition based on the year in which an employee was hired. This can be done as shown here:

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 dept_id INT NOT NULL

)

PARTITION BY HASH(YEAR(hired))

PARTITIONS 4;

expr must return a nonconstant, nonrandom integer value (in other words. You should also keep in mind that this expression is evaluated each time a row is inserted or updated, this means that very complex expressions may give rise to performance issues, particularly when performing operations (such as batch inserts) that affect a great many rows at one time.

When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use based on the modulus of the result of the user function. In other words, for an expression expr, the partition in which the record is stored is partition number N, where N = MOD(expr, num). Suppose that table t1 is defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)

 PARTITION BY HASH(YEAR(col3))

 PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is stored is determined as follows:

MOD(YEAR('2005-09-01'),4)

= MOD(2005,4)

= 1

KEY Partitioning:

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a user-defined expression, the hashing function for key partitioning is supplied by the MySQL server. MySQL Cluster uses MD5() for this purpose; for tables using other storage engines, the server employs its own internal hashing function which is based on the same algorithm as PASSWORD().

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a table that is partitioned by hash. The major differences are listed here:

- KEY is used rather than HASH.

- KEY takes only a list of one or more column names. Beginning with MySQL 5.1.5, the column or columns used as the partitioning key must comprise part or all of the table's primary key, if the table has one.

Beginning with MySQL 5.1.6, KEY takes a list of zero or more column names. Where no column name is specified as the partitioning key, the table's primary key is used, if there is one. For example, the following CREATE TABLE statement is valid in MySQL 5.1.6 or later:

CREATE TABLE k1 (

 id INT NOT NULL PRIMARY KEY,

 name VARCHAR(20)

)

PARTITION BY KEY()

PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning key:

CREATE TABLE k1 (

 id INT NOT NULL,

 name VARCHAR(20),

 UNIQUE KEY (id)

)

PARTITION BY KEY()

PARTITIONS 2;

In both of these cases, the partitioning key is the id column, even though it is not shown in the output of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the INFORMATION_SCHEMA.PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted to integer or NULL values. For example, the following CREATE TABLE statement is valid:

CREATE TABLE tm1 (

 s1 CHAR(32) PRIMARY KEY

)

PARTITION BY KEY(s1)

PARTITIONS 10;

Managing partitions:

Range and list partitions are very similar with regard to how the adding and dropping of partitions are handled. Tables which are partitioned by hash or by key are very similar to one another with regard to making changes in a partitioning setup.

Dropping a Partition:

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished using the ALTER TABLE statement with a DROP PARTITION clause.

mysql> ALTER TABLE <table_name> DROP PARTITION p2;

It is very important to remember that, when you drop a partition, you also delete all the data that was stored in that partition. You can see that this is the case by re-running the previous SELECT query. If you wish to drop all data from all partitions while preserving the table definition and its partitioning scheme, use the TRUNCATE TABLE statement.

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ... REORGANIZE PARTITION instead.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that you can from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY partitions using the ALTER TABLE ... COALESCE PARTITION statement.

Adding a Partition:

mysql> ALTER TABLE <table_name> ADD PARTITION (PARTITION p0 VALUES LESS THAN (50));

VALUES LESS THAN value must be strictly increasing for each partition.

Merge partitions:

mysql> ALTER TABLE <table_name> REORGANIZE PARTITION p0, p1 INTO (PARTITION p01 VALUES LESS THAN (10));

VALUES LESS THAN value must be strictly 2nd partion MAX VALUE.

 REORGANIZE PARTITION can be used by any partitioning type but for hash partitions
the new number of partitions must be the same as those reorganised.

mysql> ALTER TABLE t1 COALESCE PARTITION 2;

This command can be used to merge partitions in a hash partition. No data is lost.

Split partitions:

mysql> ALTER TABLE <table_name> REORGANIZE PARTITION p01 INTO (PARTITION p1 VALUES LESS THAN (10), PARTITION p2 VALUES LESS THAN (16));

Rebuild partitions:

mysql> ALTER TABLE <table_name> REBUILD PARTITION p0, p1;

Rebuild the partitions, can be a method to remove fragmentation as an example.

Optimise, analyse, repair and check partitions

mysql> ALTER TABLE t1 OPTIMIZE PARTITION (p0, p1);

mysql> ALTER TABLE t1 CHECK PARTITION (p0);

mysql> ALTER TABLE t1 ANALYZE PARTITION (p0);

mysql> ALTER TABLE t1 REPAIR PARTITION (p0);

Restrictions and Limitations on Partitioning:

1. User-defined partitioning and the MERGE storage engine are not compatible. Tables using the MERGE storage engine cannot be partitioned.

2. FEDERATED storage engine. Partitioning of FEDERATED tables is not supported.

3. CSV storage engine. Partitioned tables using the CSV storage engine are not supported.

4. Prior to MySQL 5.1.6, tables using the BLACKHOLE storage engine also could not be partitioned.

5. Partitioning by KEY is the only type of partitioning supported for the NDBCLUSTER storage engine.

16. INFORMATION_SCHEMA Tables

INFORMATION_SCHEMA provides access to database metadata.

Metadata is data about the data, such as the name of a database or table, the data type of a column, or access privileges. Other terms that sometimes are used for this information are data dictionary and system catalog.

INFORMATION_SCHEMA is the information database, the place that stores information about all the other databases that the MySQL server maintains. Inside INFORMATION_SCHEMA there are several read-only tables. They are actually views, not base tables, so there are no files associated with them.

In effect, we have a database named INFORMATION_SCHEMA, although the server does not create a database directory with that name. It is possible to select INFORMATION_SCHEMA as the default database with a USE statement, but it is possible only to read the contents of tables. You cannot insert into them, update them, or delete from them.

Example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine

FROM information_schema.tables

WHERE table_schema = 'db5'

ORDER BY table_name DESC;

The statement requests a list of all the tables in database db5, in reverse alphabetic order, showing just three pieces of information: the name of the table, its type, and its storage engine.

SCHEMATA Table:

This table provides information about databases.

TABLES Table:

This table provides information about tables in databases.

STATISTICS Table:

This table provides information about table indexes.

USER_PRIVILEGES Table:

This table provides information about global privileges. This information comes from the mysql.user grant table.

SCHEMA_PRIVILEGES Table:

This table provides information about schema (database) privileges. This information comes from the mysql.db grant table.

TABLE_PRIVILEGES Table:

This table provides information about table privileges. This information comes from the mysql.tables_priv grant table.

COLUMN_PRIVILEGES Table:

This table provides information about column privileges. This information comes from the mysql.columns_priv grant table.

TABLE_CONSTRAINTS Table:

This table describes which tables have constraints.

REFERENTIAL_CONSTRAINTS Table:

This table provides information about foreign keys. This table was added in MySQL 5.1.10.

ROUTINES Table:

This table provides information about stored routines (both procedures and functions). his information comes from the mysql.proc table.

VIEWS Table:

This table provides information about views in databases. You must have the SHOW VIEW privilege to access this table.

TRIGGERS Table:

This table provides information about triggers. You must have the SUPER privilege to access this table.

PROFILING Table:

This table provides statement profiling information. Its contents correspond to the information produced by the SHOW PROFILES and SHOW PROFILE statements. The table is empty unless the profiling session variable is set to 1.

ENGINES Table:

This table provides information about storage engines.

PARTITIONS Table:

This table provides information about table partitions.

GLOBAL_STATUS and SESSION_STATUS Tables:

This tables provide information about server status variables. Their contents correspond to the information produced by the SHOW GLOBAL STATUS and SHOW SESSION STATUS statements. This tables were added in MySQL 5.1.12.

GLOBAL_VARIABLES and SESSION_VARIABLES Tables:

This tables provide information about server status variables. Their contents correspond to the information produced by the SHOW GLOBAL VARIABLES and SHOW SESSION VARIABLES statements. This tables were added in MySQL 5.1.12.

PROCESSLIST Table:

The PROCESSLIST table provides information about which threads are running.

EVENTS Table:

The EVENTS table provides information about scheduled events.

MySQL Profiler:

The SQL Profiler is built into the database server and can be dynamically enabled/disabled via the MySQL client utility. To begin profiling one or more SQL queries, simply issue the following command:

mysql> set profiling=1;

Two things happen once you issue this command. First, any query you issue from this point on will be traced by the server with various performance diagnostics being created and attached to each distinct query. Second, a memory table named profiling is created in the INFORMATION_SCHEMA database for your particular session (not viewable by any other MySQL session) that stores all the SQL diagnostic results. This table remains persistent until you disconnect from MySQL at which point it is destroyed.

Now, simply execute a SQL query:

mysql> SELECT COUNT(*) FROM t1 WHERE broker_id = 2;

+----------+

| count(*) |

+----------+

| 200 |

+----------+

Once the query completes, you can issue the following command to view the SQL profiles that have currently been stored for you:

mysql> show profiles;

+----------+-----------------+---+

| Query_ID | Duration | Query |

+----------+-----------------+--+

| 0 | 0.00007300 | set profiling=1 |

| 1 | 0.00044700 | SELECT COUNT(*) FROM t1 WHERE broker_id = 2 |

+----------+-----------------+--+

You get a quick summary of all your captured SQL plus the total duration that the query took to complete. To get the same diagnostic info, you can also query the memory table that holds your statistical information:

mysql> SELECT SUM(duration) FROM information_schema.profiling WHERE query_id = 1;

+-------------------+

| sum(duration) |

+-------------------+

| 0.000447 |

+-------------------+

You can view more detailed diagnostic info about one or more queries that you've profiled. The most basic command is one that lists the steps a profiled query went through to satisfy your SQL request, along with each step's time:

mysql> show profile for query 1;

+------------------------+----------------+

| Status | Duration |

+------------------------+----------------+

| (initialization) | 0.00006300 |

| Opening tables | 0.00001400 |

| System lock | 0.00000600 |

| Table lock | 0.00001000 |

| init | 0.00002200 |

| optimizing | 0.00001100 |

| statistics | 0.00009300 |

| preparing | 0.00001700 |

| executing | 0.00000700 |

| Sending data | 0.00016800 |

| end | 0.00000700 |

| query end | 0.00000500 |

| freeing items | 0.00001200 |

| closing tables | 0.00000800 |

| logging slow query | 0.00000400 |

+-------------------------+-----------------+

Event Scheduler:

The MySQL Event Scheduler manages the scheduling and execution of events: Tasks that run according to schedule. Event support was added in MySQL 5.1.6.

MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as scheduled events. When you create an event, you are creating a named database object containing one or more SQL statements to be executed at one or more regular intervals, beginning and ending at a specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a “cron job”) or the Windows Task Scheduler.

MySQL Events have the following major features and properties:

· In MySQL 5.1.12 and later, an event is uniquely identified by its name and the schema to which it is assigned.

· An event performs a specific action according to a schedule. This action consists of an SQL statement, which can be a compound statement in a BEGIN ... END block if desired

· An event's timing can be either one-time or recurrent. A one-time event executes one time only. A recurrent event repeats its action at a regular interval

Event Scheduler Configuration:

Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we actually refer to this thread. When running, the event scheduler thread and its current state can be seen by users having the PROCESS privilege in the output of SHOW PROCESSLIST.

The global event_scheduler system variable determines whether the Event Scheduler is enabled and running on the server. Beginning with MySQL 5.1.12, it has one of these 3 values, which affect event scheduling as described here:

· OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown in the output of SHOW PROCESSLIST, and no scheduled events are executed. OFF is the default value for event_scheduler.

· ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled events. When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW PROCESSLIST as a daemon process.

· DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.

It is possible to set the Event Scheduler to DISABLED only at server startup. If event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime. Also, if the Event Scheduler is set to DISABLED at startup, you cannot change the value of event_scheduler at runtime.

mysql > SET GLOBAL event_scheduler = ON;

To disable the event scheduler, use one of the following two methods:

· As a command-line option when starting the server:

--event-scheduler=DISABLED

· In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it will be read by the server

event_scheduler=DISABLED

Note: You can issue event-manipulation statements when event_scheduler is set to DISABLED. No warnings or errors are generated in such cases (provided that the statements are themselves valid). However, scheduled events cannot execute until this variable is set to ON (or 1). Once this has been done, the event scheduler thread executes all events whose scheduling conditions are satisfied.

Beginning with MySQL 5.1.17, starting the MySQL server with the --skip-grant-tables option causes event_scheduler to be set to DISABLED, overriding any other value set either on the command line or in the my.cnf or my.ini file (Bug#26807).

MySQL 5.1.6 and later provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be queried to obtain information about scheduled events which have been defined on the server.

Creating Events:

CREATE EVENT <event_name>

ON SCHEDULE [AT] <schedule> [EVERY] <interval>

DO

 <event_body>;

Example:

CREATE EVENT myevent

ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

DO

 UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once—one hour following its creation—by running an SQL statement that increments the value of the myschema.mytable table's mycol column by 1.

The ON SCHEDULE clause determines when, how often, and for how long the event_body defined for the event repeats. This clause takes one of two forms:

· AT timestamp is used for a one-time event. It specifies that the event executes one time only at the date and time given by timestamp, which must include both the date and time, or must be an expression that resolves to a datetime value.

· To repeat actions at a regular interval, use an EVERY clause. The EVERY keyword is followed by an interval as described in the previous discussion of the AT keyword. (+ INTERVAL is not used with EVERY.) For example, EVERY 6 WEEK means “every six weeks”.

CREATE EVENT e_hourly

ON SCHEDULE

 EVERY 1 HOUR

COMMENT 'Clears out sessions table each hour.'

DO

DELETE FROM site_activity.sessions;

More complex compound statements, such as those used in stored routines, are possible in an event.

delimiter |

CREATE EVENT e

 ON SCHEDULE

 EVERY 5 SECOND

 DO

 BEGIN

 DECLARE v INTEGER;

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;

 SET v = 0;

 WHILE v < 5 DO

 INSERT INTO t1 VALUES (0);

 UPDATE t2 SET s1 = s1 + 1;

 SET v = v + 1;

 END WHILE;

 END |

delimiter ;

There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored routine with parameters within an event:

CREATE EVENT e_call_myproc

ON SCHEDULE

AT CURRENT_TIMESTAMP + INTERVAL 1 DAY

DO CALL myproc(5, 27);

Alter Event:

Examples:

ALTER EVENT myevent

ON SCHEDULE

EVERY 12 HOUR;

ALTER TABLE myevent

AT CURRENT_TIMESTAMP + INTERVAL 1 DAY

DO

TRUNCATE TABLE myschema.mytable;

To disable myevent, use this ALTER EVENT statement:

ALTER EVENT myevent DISABLE;

ALTER EVENT myevent RENAME TO yourevent;

You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and db_name.event_name notation, as shown here:

ALTER EVENT olddb.myevent RENAME TO newdb.myevent;

Drop Event:

DROP EVENT [IF EXISTS] event_name;

17. Buffering and Caching

MySQL uses several strategies that cache information in memory buffers to increase performance. Depending on your database architecture, you balance the size and layout of these areas, to provide the most performance benefit without wasting memory or exceeding available memory.

17.1 The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database management systems. It employs a cache mechanism to keep the most frequently accessed table blocks in memory:

- For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure contains a number of block buffers where the most-used index blocks are placed.

- For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file system cache.

- Multiple sessions can access the cache concurrently.

- You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is too small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native file system buffering provided by the operating system. (In other words, table index blocks are accessed using the same strategy as that employed for table data blocks.)

When data from any table index block must be accessed, the server first checks whether it is available in some block buffer of the key cache. If it is, the server accesses data in the key cache rather than on disk. Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for replacement, it selects the least recently used index block. To make this choice easier, the key cache module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be replaced, blocks at the beginning of the list are the least recently used and become the first candidates for eviction.

Shared Key Cache Access:

Threads can access key cache buffers simultaneously, subject to the following conditions:

- A buffer that is not being updated can be accessed by multiple sessions.

- A buffer that is being updated causes sessions that need to use it to wait until the update is complete.

- Multiple sessions can initiate requests that result in cache block replacements, as long as they do not interfere with each other (that is, as long as they need different index blocks, and thus cause different cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly

Multiple Key Caches:

Shared access to the key cache improves performance but does not eliminate contention among sessions entirely. They still compete for control structures that manage access to the key cache buffers. To reduce key cache access contention further, MySQL also provides multiple key caches. This feature enables you to assign different table indexes to different key caches.

The separate key cache can be created by setting its size with a SET GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named keycache1:

mysql> CACHE INDEX t1, t2, t3 IN keycache1;

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

For a busy server, you can use a strategy that involves three key caches:

- A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that are heavily used for searches but that are not updated.

- A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for medium-sized, intensively modified tables, such as temporary tables.

- A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache, to be used by default for all other tables.

17.2 The InnoDB Buffer Pool

InnoDB maintains a buffer pool for caching data and indexes in memory. InnoDB manages the pool as a list, using a least recently used (LRU) algorithm incorporating a midpoint insertion strategy. When room is needed to add a new block to the pool, InnoDB evicts the least recently used block and adds the new block to the middle of the list. The midpoint insertion strategy in effect causes the list to be treated as two sublists:

· At the head, a sublist of “new” (or “young”) blocks that have been recently used.

· At the tail, a sublist of “old” blocks that are less recently used.

As a result of the algorithm, the new sublist contains blocks that are heavily used by queries. The old sublist contains less-used blocks, and candidates for eviction are taken from this sublist.

innodb_buffer_pool_size

Specifies the size of the buffer pool. If your buffer pool is small and you have sufficient memory, making the pool larger can improve performance by reducing the amount of disk I/O needed as queries access InnoDB tables.

innodb_old_blocks_pct

Specifies the approximate percentage of the buffer pool that InnoDB uses for the old block sublist. The range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool).

innodb_old_blocks_time

Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. The default value is 0: A block inserted into the old sublist moves immediately to the new sublist the first time it is accessed, no matter how soon after insertion the access occurs. If the value is greater than 0, blocks remain in the old sublist until an access occurs at least that many ms after the first access. For example, a value of 1000 causes blocks to stay in the old sublist for 1 second after the first access before they become eligible to move to the new sublist.

innodb_old_blocks_pct and innodb_old_blocks_time are available as of MySQL 5.1.41, but only for InnoDB Plugin, not the built-in version of InnoDB.

18. Locking Issues

MySQL manages contention for table contents using locking:

· Internal locking is performed within the MySQL server itself to manage contention for table contents by multiple threads. This type of locking is internal because it is performed entirely by the server and involves no other programs.

· External locking occurs when the server and other programs lock MyISAM table files to coordinate among themselves which program can access the tables at which time.

18.1. Internal Locking Methods:

This section discusses internal locking; that is, locking performed within the MySQL server itself to manage contention for table contents by multiple sessions. This type of locking is internal because it is performed entirely by the server and involves no other programs. External locking occurs when the server and other programs lock MyISAM table files to coordinate among themselves which program can access the tables at which time. MySQL uses row-level locking for InnoDB tables, and table-level locking for MyISAM, MEMORY, and MERGE tables.

Which lock type works better for your application depends on the application and its workload, especially whether the data is modified frequently and how many concurrent sessions need to read or write the same tables. Different parts of an application may require different lock types.

Considerations for Table Locking:

Table locking in MySQL is deadlock-free for storage engines that use table-level locking. Deadlock avoidance is managed by always requesting all needed locks at once at the beginning of a query and always locking the tables in the same order.

MySQL grants table write locks as follows:

1. If there are no locks on the table, put a write lock on it.

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table read locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the lock is made available to the requests in the write lock queue and then to the requests in the read lock queue. This ensures that updates to a table are not “starved” even if there is heavy SELECT activity for the table. However, if you have many updates for a table, SELECT statements wait until there are no more updates.

You can analyze the table lock contention on your system by checking the Table_locks_immediate and Table_locks_waited status variables, which indicate the number of times that requests for table locks could be granted immediately and the number that had to wait, respectively.

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are always inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and SELECT statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table at the same time other clients are reading from it. Holes can result from rows having been deleted from or updated in the middle of the table. If there are holes, concurrent inserts are disabled but are enabled again automatically when all holes have been filled with new data. This behavior is altered by the concurrent_insert system variable.

InnoDB uses row locks. Deadlocks are possible for InnoDB because it automatically acquires locks during the processing of SQL statements, not at the start of the transaction.

Considerations for Row Locking:

Advantages of row-level locking:

1. Fewer lock conflicts when different sessions access different rows.

2. Possible to lock a single row for a long time.

Disadvantages of row-level locking:

1. Requires more memory than table-level locks.

2. Slower than table-level locks when used on a large part of the table because you must acquire many more locks.

3. Slower if you often do GROUP BY operations on a large part of the data or if you must scan the entire table frequently.

Choosing the Type of Locking:

Generally, table locks are superior to row-level locks in the following cases:

1. Most statements for the table are reads.

2. Statements for the table are a mix of reads and writes, where writes are updates or deletes for a single row that can be fetched with one key read:

mysql> UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;

mysql> DELETE FROM tbl_name WHERE unique_key_col=key_value;

3. SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE statements

4. Many scans or GROUP BY operations on the entire table without any writers.

18.2 Table Locking Issues:

To achieve a very high lock speed, MySQL uses table locking for all storage engines except InnoDB and NDBCLUSTER. For InnoDB tables, MySQL uses table locking only if you explicitly lock the table with LOCK TABLES. For this storage engine, avoid using LOCK TABLES at all, because InnoDB uses automatic row-level locking to ensure transaction isolation.

For large tables, table locking is often better than row locking, but there are some disadvantages:

· Table locking enables many sessions to read from a table at the same time, but if a session wants to write to a table, it must first get exclusive access. During the update, all other sessions that want to access this particular table must wait until the update is done.

· A session issues a SELECT that takes a long time to run. Another session then issues an UPDATE on the same table. This session waits until the SELECT is finished.

The following items describe some ways to avoid or reduce contention caused by table locking:

· Try to get the SELECT statements to run faster so that they lock tables for a shorter time.

· To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY attribute.

· To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute.

· Start mysqld with --low-priority-updates. For storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table lower priority than SELECT statements.

· Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks shorter.

18.3 Concurrent Inserts:

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an INSERT statement can be executed to add rows to the end of the table at the same time that SELECT statements are reading rows from the table. If there are multiple INSERT statements, they are queued and performed in sequence, concurrently with the SELECT statements. The results of a concurrent INSERT may not be visible immediately.

The concurrent_insert system variable can be set to modify the concurrent-insert processing. By default, the variable is set to 1 and concurrent inserts are handled as just described. If concurrent_insert is set to 0, concurrent inserts are disabled. If the variable is set to 2, concurrent inserts at the end of the table are permitted even for tables that have deleted rows.

18.4 External Locking:

External locking is used in situations where a single process such as the MySQL server cannot be assumed to be the only process that requires access to tables. Here are some examples:

· If you run multiple servers that use the same database directory (not recommended), each server must have external locking enabled.

· If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either ensure that the server is not running, or that the server has external locking enabled so that it locks table files as necessary to coordinate with myisamchk for access to the tables. The same is true for use of myisampack to pack MyISAM tables. If the server is run with external locking enabled, you can use myisamchk at any time for read operations such a checking tables. In this case, if the server tries to update a table that myisamchk is using, the server will wait for myisamchk to finish before it continues.

With external locking in effect, each process that requires access to a table acquires a file system lock for the table files before proceeding to access the table. If all necessary locks cannot be acquired, the process is blocked from accessing the table until the locks can be obtained. External locking affects server performance because the server must sometimes wait for other processes before it can access tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system variable. When this variable is enabled, external locking is disabled, and vice versa. Use of external locking can be controlled at server startup by using the --external-locking or --skip-external-locking option.

19. High Availability and Scalability

19.1 Replication:

Replication enables data from one MySQL database server (the master) to be replicated to one or more MySQL database servers (the slaves). Replication is asynchronous - slaves need not be connected permanently to receive updates from the master. Depending on the configuration, you can replicate all databases, selected databases, or even selected tables within a database.

The target uses for replication in MySQL include:

Scale-out solutions - spreading the load among multiple slaves to improve performance. In this environment, all writes and updates must take place on the master server. Reads, however, may take place on one or more slaves. This model can improve the performance of writes (since the master is dedicated to updates), while dramatically increasing read speed across an increasing number of slaves.

Data security - because data is replicated to the slave, and the slave can pause the replication process, it is possible to run backup services on the slave without corrupting the corresponding master data.

Analytics - live data can be created on the master, while the analysis of the information can take place on the slave without affecting the performance of the master.

Replication in MySQL features support for one-way, asynchronous replication, in which one server acts as the master, while one or more other servers act as slaves. This is in contrast to the synchronous replication which is a characteristic of MySQL Cluster.

Advantages:

1. It makes backing up the database easier and safer.

2. Gives more performance with load balancing. we can split the load between two servers by directing reads to the slave server and writes to the master server.

3. We can replicate from one storage engine to another storage engine.

4. We can use this slave server for data analysis, reports etc....instead on impacting the production server we can do this in slave server and even we can shutdown the slave server.

Disadvantages:

1. The main disadvantage of replication is there is no guaranty of data synchronization between two servers.

2. No automatic fail over technique in case if master fails. This causes a little down time.

3. User defined variables and temporary tables may not work.

4. If replication is set with multiple slaves it may cause some load on master server to updated the statement to all the slaves.

Replication Formats:

 Replication is of three formats:

 1. STATEMENT BASED

 2. ROW BASED

 3. MIXED-FORMAT
(Combination of statement based and row based)

Statement Based: All statements propagates from master to slave and executes the statements on slave.

Advantages of Statement-Based Replication:

 1. Less data written to log files. This results less storage space for log files.

 2. Log files contains all the changes made to the database. so they can be used to track the database changes.

Disadvantages of Statement-Based Replication:

 1. Queries using function like NOW(), RAND(), CURDATE(), UUID() etc are unsafe.

 2. DELETE and UPDATE queries using a LIMIT clause and without using ORDER BY clause are
unsafe.

 3. Queries requires more number of locks on tables.

Row Based: Row-based binary logging logs changes in individual table rows.

Advantages of Row-Based Replication:

 1. All queries can be replicated safely.

 2. Queries requires less number of locks on tables.

Disadvantages of Row-Based Replication:

 1. Large data written to log files. This results large storage space for log files.

This would take a little longer time when statements like BLOB and TEXT values are
encountered.

 2. We cannot track the logs to find the changes committed to the database.

Mixed Based: When the mixed format is in effect, statement-based logging is used by default, but automatically switches to row-based logging in particular cases

 Note: MIXED-FORMAT replication was introduced from MySQL Version 5.1.8.

19.1.1 Replication Configuration:

Replication between servers in MySQL is based on the binary logging mechanism. The MySQL instance operating as the master writes updates and changes as “events” to the binary log. The information in the binary log is stored in different logging formats according to the database changes being recorded. Slaves are configured to read the binary log from the master and to execute the events in the binary log on the slave's local database.

Once binary logging has been enabled, all statements are recorded in the binary log. Each slave receives a copy of the entire contents of the binary log. It is the responsibility of the slave to decide which statements in the binary log should be executed; you cannot configure the master to log only certain events. If you do not specify otherwise, all events in the master binary log are executed on the slave. If required, you can configure the slave to process only events that apply to particular databases or tables.

Each slave keeps a record of the binary log coordinates: The file name and position within the file that it has read and processed from the master. This means that multiple slaves can be connected to the master and executing different parts of the same binary log. Because the slaves control this process, individual slaves can be connected and disconnected from the server without affecting the master's operation. Also, because each slave remembers the position within the binary log, it is possible for slaves to be disconnected, reconnect and then “catch up” by continuing from the recorded position.

Both the master and each slave must be configured with a unique ID. In addition, each slave must be configured with information about the master host name, log file name, and position within that file. These details can be controlled from within a MySQL session using the CHANGE MASTER TO statement on the slave. The details are stored within the slave's master.info file.

How to Set Up Replication:

This section describes how to set up complete replication of a MySQL server. There are a number of different methods for setting up replication, and the exact method to use depends on how you are setting up replication, and whether you already have data within your master database.

There are some generic tasks that are common to all replication setups:

· On the master, you must enable binary logging and configure a unique server ID. This might require a server restart.

· On each slave that you want to connect to the master, you must configure a unique server ID. This might require a server restart

· You may want to create a separate user that will be used by your slaves to authenticate with the master to read the binary log for replication. The step is optional.

· Before creating a data snapshot or starting the replication process, you should record the position of the binary log on the master. You will need this information when configuring the slave so that the slave knows where within the binary log to start executing events.

· If you already have data on your master and you want to use it to synchronize your slave, you will need to create a data snapshot. You can create a snapshot using mysqldump or by copying the data files directly.

Once you have configured the basic options, you will need to follow the instructions for your replication setup. A number of alternatives are provided:

· If you are establishing a new MySQL master and one or more slaves, you need only set up the configuration, as you have no data to exchange.

· If you are already running a MySQL server, and therefore already have data that must be transferred to your slaves before replication starts.

· If you are adding slaves to an existing replication environment, you can set up the slaves without affecting the master.

Setting Up Replication with New Master and Slaves:

The easiest and most straightforward method for setting up replication is to use new master and slave servers.

You can also use this method if you are setting up new servers but have an existing dump of the databases from a different server that you want to load into your replication configuration. By loading the data into a new master, the data will be automatically replicated to the slaves.

Setting the Replication Master Configuration:

On a master, you must enable binary logging and establish a unique server ID. If this has not already been done, this part of master setup requires a server restart.

Each server within a replication group must be configured with a unique server ID. This ID is used to identify individual servers within the group, and must be a positive integer between 1 and (232)–1. How you organize and select the numbers is entirely up to you

Step 1:

To configure the binary log and server ID options, you will need to shut down your MySQL server and edit the my.cnf or my.ini file. Add the following options to the configuration file within the [mysqld] section.

[mysqld]

log-bin=mysql-bin

server-id=1

skip-networking

After making the changes, restart the server.

Ensure that the skip-networking option is not enabled on your master. If networking has been disabled, your slave will not able to communicate with the master and replication will fail.

Step 2:

Each slave must connect to the master using a MySQL user name and password, so there must be a user account on the master that the slave can use to connect. Any account can be used for this operation, providing it has been granted the REPLICATION SLAVE privilege. You may wish to create a different account for each slave, or connect to the master using the same account for each slave.

You need not create an account specifically for replication. However, you should be aware that the user name and password will be stored in plain text within the master.info file. Therefore, you may want to create a separate account that has privileges only for the replication process, to minimize the possibility of compromise to other accounts.

mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'slave_hostname' IDENTIFIED BY ‘password’;

Step 3:

To configure replication on the slave you must determine the master's current coordinates within its binary log. You will need this information so that when the slave starts the replication process, it is able to start processing events from the binary log at the correct point.

To obtain the master binary log coordinates, follow these steps:

1. Start a session on the master by connecting to it with the command-line client, and flush all tables and block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

For InnoDB tables, note that FLUSH TABLES WITH READ LOCK also blocks COMMIT operations.

2. In a different session on the master, use the SHOW MASTER STATUS statement to determine the current binary log file name and position:

mysql > SHOW MASTER STATUS;

+------------------------+-----------+--------------------+--------------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+------------------------+-----------+--------------------+--------------------------+

| mysql-bin.000003 | 73 | | |

+------------------------+-----------+--------------------+--------------------------+

The File column shows the name of the log file and Position shows the position within the file. You need them later when you are setting up the slave. They represent the replication coordinates at which the slave should begin processing new updates from the master.

In the first session release the read lock:

mysql> UNLOCK TABLES;

If the master has been running previously without binary logging enabled, the log file name and position values displayed by SHOW MASTER STATUS will be empty.

You now have the information you need to enable the slave to start reading from the binary log in the correct place to start replication.

Setting the Replication Slave Configuration:

Step 4:

On a replication slave, you must establish a unique server ID. If this has not already been done, this part of slave setup requires a server restart.

[mysqld]

server-id=2

After making the changes, restart the server.

If you are setting up multiple slaves, each one must have a unique server-id value that differs from that of the master and from each of the other slaves.

You do not have to enable binary logging on the slave for replication to be enabled. However, if you enable binary logging on the slave, you can use the binary log for data backups and crash recovery on the slave, and also use the slave as part of a more complex replication topology (for example, where the slave acts as a master to other slaves).

Step 5:

To set up the slave to communicate with the master for replication, you must tell the slave the necessary connection information. To do this, execute the following statement on the slave, replacing the option values with the actual values relevant to your system:

mysql> CHANGE MASTER TO

 MASTER_HOST='master_host_name',

 MASTER_USER='replication_user_name',

MASTER_PASSWORD='replication_password',

MASTER_LOG_FILE='recorded_log_file_name',

MASTER_LOG_POS=recorded_log_position;

The MASTER_LOG_FILE and MASTER_LOG_POS values should be used here which are obtained from Step 3.

The CHANGE MASTER TO statement has other options as well.

Step 6:

After that issue a command to start slave.

mysql> START SLAVE;

The above statement starts both sql thread and IO thread.

When a START SLAVE statement is issued on a slave server, the slave creates an I/O thread, which connects to the master and asks it to send the updates recorded in its binary logs.

The slave creates an SQL thread to read the relay log that is written by the slave I/O thread and execute the events contained therein.

To start or stop just SQL Thread use

mysql> START/STOP SLAVE SQL_THREAD;

To start or stop just SQL Thread use

mysql> START/STOP SLAVE IO_THREAD;

Step 7:

To see replication status use below command:

mysql> SHOW SLAVE STATUS\G

Setting Up Replication with Existing Master and New Slave:

When setting up replication with existing data, you will need to decide how best to get the data from the master to the slave before starting the replication service.

1. If server_id and binary logging are not enabled on the master you need to enable it and restart the server (see step 1).

2. If the MySQL master is running, create a user to be used by the slave when connecting to the master during replication (see step 2).

Creating a Data Snapshot Using mysqldump:

3. Start a session on the server by connecting to it with the command-line client, and flush all tables and block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

In another session, use mysqldump to create a dump either of all the databases you want to replicate, or of selected individual databases. For example:

[shell]# mysqldump --all-databases --lock-all-tables > dbdump.sql

Transfer the dump file to slave server.

[shell]# scp dbdump.sql slaveip:/<path>

password:

4. Obtain master status by using SHOW MASTER STATUS (see Step 3).

5. Update the configuration of the slave (see Step 4).

6. Import the dump file:

[shell]# mysql < dbdump.sql

7. Configure the slave with the replication coordinates from the master (see Step 5).

8. Start the slave threads (see Step 6).

Replication Options and Variables:

server-id=<value>

Need to use unique server id to setup a replication configuration.

--master-info-file=file_name

The name to use for the file in which the slave records information about the master. The default name is master.info in the data directory.

--log-slave-updates

Normally, a slave does not log to its own binary log any updates that are received from a master server. This option tells the slave to log the updates performed by its SQL thread to its own binary log. For this option to have any effect, the slave must also be started with the --log-bin option to enable binary logging. --log-slave-updates is used when you want to chain replication servers. For example, you might want to set up replication servers using this arrangement:

A -> B -> C

--master-connect-retry=seconds

The number of seconds that the slave thread sleeps before trying to reconnect to the master in case the master goes down or the connection is lost.If not set, the default is 60.The number of reconnection attempts is limited by the --master-retry-count option.

--master-retry-count=count

The number of times that the slave tries to connect to the master before giving up. Reconnects are attempted at intervals set by the --master-connect-retry option. The default value is 86400. A value of 0 means “infinite”; the slave attempts to connect forever.

--max-relay-log-size=size

The size at which the server rotates relay log files automatically.

--read-only

Cause the slave to permit no updates except from slave threads or from users having the SUPER privilege. On a slave server, this can be useful to ensure that the slave accepts updates only from its master server and not from clients.

--relay-log=file_name

The basename for the relay log. The default basename is host_name-relay-bin. The server writes the file in the data directory unless the basename is given with a leading absolute path name to specify a different directory.

--relay-log-index=file_name

The name to use for the relay log index file. The default name is host_name-relay-bin.index in the data directory

-relay-log-info-file=file_name

The name to use for the file in which the slave records information about the relay logs. The default name is relay-log.info in the data directory.

--relay-log-purge={0|1}

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default value is 1 (enabled). This is a global variable that can be changed dynamically.

--replicate-do-db=db_name

The effects of this option depend on whether statement-based or row-based replication is in use.

SBR: Tell the slave SQL thread to restrict replication to statements where the default database (that is, the one selected by USE) is db_nam. To specify more than one database, use this option multiple times, once for each database; however, doing so does not replicate cross-database statements such as UPDATE some_db.some_table SET foo='bar' while a different database (or no database) is selected.

RBR: Tells the slave SQL thread to restrict replication to database db_name. Only tables belonging to db_name are changed; the current database has no effect on this. However, issuing cross update statements on the master has no effect on the slave when using row-based replication and –replicate-do-db.

--replicate-ignore-db=db_name

As with --replicate-do-db, the effects of this option depend on whether statement-based or row-based replication is in use.

SBR: Tells the slave SQL thread not to replicate any statement where the default database (that is, the one selected by USE) is db_name.

RBR: Tells the slave SQL thread not to update any tables in the database db_name. The default database has no effect. When using statement-based replication, the following example does not work as you might expect. Suppose that the slave is started with --replicate-ignore-db=sales and you issue the following statements on the master:

USE prices;

UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies only to the default database (determined by the USE statement). Because the sales database was specified explicitly in the statement, the statement has not been filtered. However, when using row-based replication, the UPDATE statement's effects are not propagated to the slave, and the slave's copy of the sales.january table is unchanged.

--replicate-do-table=db_name.tbl_name

Tells the slave SQL thread to restrict replication to the specified table. To specify more than one table, use this option multiple times, once for each table. This works for both cross-database updates and default database updates.

--replicate-ignore-table=db_name.tbl_name

Tells the slave SQL thread not to replicate any statement that updates the specified table, even if any other tables might be updated by the same statement. To specify more than one table to ignore, use this option multiple times, once for each table. This works for cross-database updates.

--replicate-rewrite-db=from_name->to_name

Tells the slave to translate the default database (that is, the one selected by USE) to to_name if it was from_name on the master. Only statements involving tables are affected and only if from_name is the default database on the master. This does not work for cross-database updates. To specify multiple rewrites, use this option multiple times.

--replicate-wild-do-table=db_name.tbl_name

Tells the slave thread to restrict replication to statements where any of the updated tables match the specified database and table name patterns. To specify more than one table, use this option multiple times, once for each table. This works for cross-database updates.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table where the database name starts with foo and the table name starts with bar.

--replicate-wild-ignore-table=db_name.tbl_name

Tells the slave thread not to replicate a statement where any table matches the given wildcard pattern. To specify more than one table to ignore, use this option multiple times, once for each table.

--slave-skip-errors=[err_code1,err_code2,...|all]

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve the inconsistency in the data manually. This option tells the slave SQL thread to continue replication when a statement returns any of the errors listed in the option value.

Examples:

--slave-skip-errors=1062,1053

--slave-skip-errors=all

Client Interface

and Utilities

Administrative

 Interface and Utilities

Client Interface

 and Utilities

Query Interface

Embedded

DML

Precompiler

Query

Preprocessor

Query

 Optimizer

DDL

 Compiler

	

Execution

 Engine

Transaction Management

Recovery Management

Log Manager

Recovery

 Manager

Concurrency-

Control

Manager

Transaction

Manager

Storage Management

Resource Manager

Main and Virtual

Memory (Includes

all buffers)

Buffer Manager

Log Files, Databases,

Index, Data and

 meta-data files

Storage Manager

� EMBED opendocument.CalcDocument.1 ���

						

				

	

 				 	 				 SQL

								 		 Thread

IO Thread

Master

 DB

Slave

 DB

 DB

Binary

 Logs

Relay

Logs

						

				

	

 				 	 				 SQL

								 		 Thread

IO Thread

Master

 DB

Slave

 DB

 DB

Binary

 Logs

Relay

Logs

_-1345763676.unknown

